Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
基金Natural Science Foundation of China(No.51871244)Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20200172)Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320190103)。
基金supported by the National Natural Science Foundation of China(No.51804272)High-end Talent Support Program of Yangzhou University(China)+3 种基金Qinglan Project of Yangzhou University(China)Yangzhou City-Yangzhou University Cooperation Foundation,China(No.YZ2022183)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(No.SJCX22_1716)Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province,China(No.202211117173T)。
基金supported by the National Natural Science Foundation of China (Nos.51690163,52174375)the Fund of the State Key Laboratory of Solidification Processing in NWPU,China (No.2021-TS-01)+1 种基金the Innovation Capability Support Program of Shaanxi Province,China (No.2020KJXX-073)the Fundamental Research Funds for the Central Universities,China.
基金the supports of the National Natural Science Foundation of China (No. 51901153)Natural Science Foundation of Shanxi Province,China (No. 201901D211096)。
基金supported by the National Natural Science Foundation of China(Nos.51775480,51605420)the Natural Science Foundation of Hebei Province,China(No.E2018203143)。
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.