为了探究微型蒸发器内的蒸发沸腾现象,为今后蒸发器设计提供指导。利用FLUENT软件建立了微型蒸发器模型,对封闭空间内池沸腾现象进行了模拟研究,探讨了不同过热度下加热面热流密度、腔内相对压力、液柱排出时间及气泡脱离时间的变化规...为了探究微型蒸发器内的蒸发沸腾现象,为今后蒸发器设计提供指导。利用FLUENT软件建立了微型蒸发器模型,对封闭空间内池沸腾现象进行了模拟研究,探讨了不同过热度下加热面热流密度、腔内相对压力、液柱排出时间及气泡脱离时间的变化规律。结果表明:热流密度与腔内相对压力均随过热度的提高而增长,其中热流密度呈线性增长趋势,而腔内相对压力的增长率不断减小;液柱排出时间与气泡脱离时间均随过热度的增长而减小,但减小趋势不断变缓。与40℃的过热度相比,在过热度为50℃时,除热流密度保持线性增长外,其余指标变化甚微,腔内相对压力、液柱排出时间和气泡脱离时间仅分别变化0.3 k Pa、0.25 s和0.002 s。适当提高过热度可以促进沸腾换热,但提高到一定程度后继续提高过热度对沸腾换热的促进作用有限。展开更多
文摘为了探究微型蒸发器内的蒸发沸腾现象,为今后蒸发器设计提供指导。利用FLUENT软件建立了微型蒸发器模型,对封闭空间内池沸腾现象进行了模拟研究,探讨了不同过热度下加热面热流密度、腔内相对压力、液柱排出时间及气泡脱离时间的变化规律。结果表明:热流密度与腔内相对压力均随过热度的提高而增长,其中热流密度呈线性增长趋势,而腔内相对压力的增长率不断减小;液柱排出时间与气泡脱离时间均随过热度的增长而减小,但减小趋势不断变缓。与40℃的过热度相比,在过热度为50℃时,除热流密度保持线性增长外,其余指标变化甚微,腔内相对压力、液柱排出时间和气泡脱离时间仅分别变化0.3 k Pa、0.25 s和0.002 s。适当提高过热度可以促进沸腾换热,但提高到一定程度后继续提高过热度对沸腾换热的促进作用有限。