针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故...针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。展开更多
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo...针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。展开更多
文摘针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。
文摘针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。