飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分...飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分析模型的结构损伤导波POD计算方法,该方法通过构建在线导波监测信号的损伤指数与裂纹长度间的对应关系,得到结构损伤POD的统计计算模型,并分析了拟合参数的不确定性对计算模型的影响,构建了不同置信度下的导波POD计算模型。通过开展金属开孔和搭接结构疲劳裂纹导波监测试验,验证了该方法的有效性。试验结果表明,损伤指数类型、对应关系拟合函数和传感器监测方案均对结构损伤导波POD具有影响,且在95%置信度90%POD下金属开孔和搭接结构的可检裂纹长度分别约为2.6 mm和9.5 mm。展开更多
随着航天飞行器面临的力学环境愈发严酷,热与振动环境已成为造成结构损伤和破坏、产品功能下降或失效的关键因素。建立了一种考虑三轴振动与热复合环境的虚拟试验方法,以简化的筒形舱段为对象,分别建立石英灯阵高温加热仿真模型与三轴...随着航天飞行器面临的力学环境愈发严酷,热与振动环境已成为造成结构损伤和破坏、产品功能下降或失效的关键因素。建立了一种考虑三轴振动与热复合环境的虚拟试验方法,以简化的筒形舱段为对象,分别建立石英灯阵高温加热仿真模型与三轴振动仿真模型,并通过实际试验数据得到振动台-夹具传递函数,将三者结合以建立三轴虚拟热振仿真模型。分别通过舱段结构单轴热振试验与三轴热振试验来验证所建模型的准确性,并基于验证后的模型获取三轴振动下结构中央测点随温度时变的传递函数变化情况。由舱段模态试验验证舱段有限元模型的准确性,对比前6阶模态频率误差不超过5%。在单轴热振试验中,仿真模型各测点响应均方根值(root mean square,RMS)与试验加速度响应RMS的误差不超过15%;在三轴向热振试验中RMS误差不超过20%,验证了所建虚拟热振模型的有效性。展开更多
文摘飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分析模型的结构损伤导波POD计算方法,该方法通过构建在线导波监测信号的损伤指数与裂纹长度间的对应关系,得到结构损伤POD的统计计算模型,并分析了拟合参数的不确定性对计算模型的影响,构建了不同置信度下的导波POD计算模型。通过开展金属开孔和搭接结构疲劳裂纹导波监测试验,验证了该方法的有效性。试验结果表明,损伤指数类型、对应关系拟合函数和传感器监测方案均对结构损伤导波POD具有影响,且在95%置信度90%POD下金属开孔和搭接结构的可检裂纹长度分别约为2.6 mm和9.5 mm。
文摘煤的层理面倾角(bedding plane angle,BPA)对射流破岩的效果影响显著。为探讨真三轴应力下不同BPA煤的射流破坏机制,开展了不同BPA煤在真三轴应力下的纯水射流冲蚀试验。结果表明,当煤的BPA较低或较高时,射流冲击分别容易形成锥形破碎坑和裂缝坑,破碎坑开口随着BPA的增大由圆形逐步向椭圆形过渡,煤的破坏模式由剪切破坏主导转变为拉伸-水楔效应主导。随着BPA增至60°,破岩体积增加了154.35%。当施加三轴应力时,煤层理面对射流破煤性能的影响被抑制,不同BPA煤的破坏模式仅呈现圆孔破碎坑,水锤压力引起的剪切破坏是煤在三轴应力下破坏的主要原因,60°BPA煤样的破坏体积减少了95.60%,相比其他倾角降低幅度达到最大。BPA对煤的轴向损伤演化具有驱动作用,随着倾角增大,轴向损伤发生波动。当施加三轴应力时,三轴应力抑制了射流破煤的损伤演化,煤的轴向损伤出现收缩。煤的破碎坑壁面的扫描电子显微镜(scanning electron microscope,SEM)结果表明:当施加三轴应力时,0°BPA煤样的破碎孔壁不再出现微裂隙与脆性剪切破坏的痕迹,并且孔隙的数量与尺寸大幅减小;60°BPA煤样的破碎孔壁不再出现水楔作用导致的大量锯齿状痕迹,三轴应力下不同BPA煤的破碎孔壁面均出现明显的延性剪切破坏特征。
文摘随着航天飞行器面临的力学环境愈发严酷,热与振动环境已成为造成结构损伤和破坏、产品功能下降或失效的关键因素。建立了一种考虑三轴振动与热复合环境的虚拟试验方法,以简化的筒形舱段为对象,分别建立石英灯阵高温加热仿真模型与三轴振动仿真模型,并通过实际试验数据得到振动台-夹具传递函数,将三者结合以建立三轴虚拟热振仿真模型。分别通过舱段结构单轴热振试验与三轴热振试验来验证所建模型的准确性,并基于验证后的模型获取三轴振动下结构中央测点随温度时变的传递函数变化情况。由舱段模态试验验证舱段有限元模型的准确性,对比前6阶模态频率误差不超过5%。在单轴热振试验中,仿真模型各测点响应均方根值(root mean square,RMS)与试验加速度响应RMS的误差不超过15%;在三轴向热振试验中RMS误差不超过20%,验证了所建虚拟热振模型的有效性。