Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the d...Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.展开更多
The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW l...Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.展开更多
We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasib...We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.展开更多
X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an ...Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear ...The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.展开更多
To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity feat...To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.展开更多
A resonant cavity based on the TM_(010)mode is an effective tool for noninvasive beam characterization. This technique has the advantages of a high signal-to-noise ratio, compact structure, and is related to multiple ...A resonant cavity based on the TM_(010)mode is an effective tool for noninvasive beam characterization. This technique has the advantages of a high signal-to-noise ratio, compact structure, and is related to multiple parameters compared with other beam monitors. In this study, high-precision measurements of the bunch charge, arrival time, bunch length, and energy parameters based on the TM_(010)mode are discussed. A cavity beam arrival time monitor(BAM) utilizing a phase cavity has been widely used in many facilities. Regarding bunch-length measurements, the influence of the beam energy, beam offset,and longitudinal spectrum on the TM_(010)mode are carefully considered to reduce errors, and the theoretical resolution of two cavities with different frequencies is analyzed. Owing to the dependence of the beam velocity of the beam loss factor, this method can also be used for the detection low beam energy using two cavities with the same frequency but different cavity lengths. A set of three cavities with different lengths and frequencies of 1.902 and 11.424 GHz is presented for measuring the four aforementioned parameters.展开更多
The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the ...The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602201)。
文摘Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34030000)the National Key R & D Program of China (No.2022YFA1602404)+2 种基金National Natural Science Foundation of China (No. U1832129)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2017309)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province of China (No.21IRTSTHN011)。
文摘Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.
基金supported by the National Natural Science Foundation of China(Grant No.11975214).
文摘We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金supported by the National Key Research and Development Program of China(No.2019YFA0405402).
文摘Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.
文摘The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.
基金supported by the Chinese initiative accelerator driven subcritical system and the hundred talents plan of the Chinese Academy of Sciences(No.E129841Y).
文摘To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.
文摘A resonant cavity based on the TM_(010)mode is an effective tool for noninvasive beam characterization. This technique has the advantages of a high signal-to-noise ratio, compact structure, and is related to multiple parameters compared with other beam monitors. In this study, high-precision measurements of the bunch charge, arrival time, bunch length, and energy parameters based on the TM_(010)mode are discussed. A cavity beam arrival time monitor(BAM) utilizing a phase cavity has been widely used in many facilities. Regarding bunch-length measurements, the influence of the beam energy, beam offset,and longitudinal spectrum on the TM_(010)mode are carefully considered to reduce errors, and the theoretical resolution of two cavities with different frequencies is analyzed. Owing to the dependence of the beam velocity of the beam loss factor, this method can also be used for the detection low beam energy using two cavities with the same frequency but different cavity lengths. A set of three cavities with different lengths and frequencies of 1.902 and 11.424 GHz is presented for measuring the four aforementioned parameters.
基金This work was supported by the National Natural Science Foundation of China(No.12005239).
文摘The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.