合肥光源实验站现在的扫描实验全部是基于步进扫描模式的。这种步进模式下由于运动机构存在一定的死区时间,实验耗时长,效率低。为了提高实验效率,设计了一种基于硬件触发的飞扫控制系统,可以实现实验过程的快速连续扫描。该飞扫控制系...合肥光源实验站现在的扫描实验全部是基于步进扫描模式的。这种步进模式下由于运动机构存在一定的死区时间,实验耗时长,效率低。为了提高实验效率,设计了一种基于硬件触发的飞扫控制系统,可以实现实验过程的快速连续扫描。该飞扫控制系统包括同步信号采集模块、同步运动控制模块以及软件控制模块,使用EPICS(Experimental Physics and Industrial Control System)架构实现设备控制,并基于Bluesky完成实验流程控制以及数据采集。随后在合肥光源的软X射线磁性圆二色实验站上进行了飞扫控制系统的部署和测试。测试结果表明,在满足采谱性能指标的前提下,该飞扫控制系统可将单次采谱时间从几十分钟量级降低至分钟量级,显著提高了实验效率和用户体验。展开更多
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
文摘合肥光源实验站现在的扫描实验全部是基于步进扫描模式的。这种步进模式下由于运动机构存在一定的死区时间,实验耗时长,效率低。为了提高实验效率,设计了一种基于硬件触发的飞扫控制系统,可以实现实验过程的快速连续扫描。该飞扫控制系统包括同步信号采集模块、同步运动控制模块以及软件控制模块,使用EPICS(Experimental Physics and Industrial Control System)架构实现设备控制,并基于Bluesky完成实验流程控制以及数据采集。随后在合肥光源的软X射线磁性圆二色实验站上进行了飞扫控制系统的部署和测试。测试结果表明,在满足采谱性能指标的前提下,该飞扫控制系统可将单次采谱时间从几十分钟量级降低至分钟量级,显著提高了实验效率和用户体验。
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.