The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline qua...The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline quality of as\|grown thin SOS films by chemically vapor deposition method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self\|silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a great improvement in silicon layer crystallinity and channel carrier mobility, respectively by double crystal X\|ray diffraction and electrical measurements. Thin SPE SOS films would have application to the high\|performance CMOS circuitry.展开更多
文摘The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline quality of as\|grown thin SOS films by chemically vapor deposition method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self\|silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a great improvement in silicon layer crystallinity and channel carrier mobility, respectively by double crystal X\|ray diffraction and electrical measurements. Thin SPE SOS films would have application to the high\|performance CMOS circuitry.