期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ESN神经网络的光通信网络安全态势辨识研究 被引量:3
1
作者 李俊州 高春艳 《激光杂志》 CAS 北大核心 2023年第5期91-95,共5页
光通信网络在传输信息时,很容易被非法攻击,发生信息窃取、篡改和删除等泄露行为。针对上述问题,为保证光通信网络安全,提出一种基于ESN神经网络的光通信网络安全态势辨识方法。该方法采用NetFlow技术设计采集器,采集NetFlow流量数据,... 光通信网络在传输信息时,很容易被非法攻击,发生信息窃取、篡改和删除等泄露行为。针对上述问题,为保证光通信网络安全,提出一种基于ESN神经网络的光通信网络安全态势辨识方法。该方法采用NetFlow技术设计采集器,采集NetFlow流量数据,并实施离散化处理。将NetFlow流量数据转换为流量灰度图像,并借助灰度共生矩阵提取图像特征,包括像素灰度分布的均匀程度、图像包含的信息量、图像的视觉清晰度、灰度共生矩阵元素排列的相似程度、图像局部灰度均匀性,作为NetFlow流量数据的特征。以5项特征为输入,利用ESN神经网络构建辨识模型,得出光通信网络安全态势类型。结果表明:与基于卷积神经网络的识别方法、基于贝叶斯的识别方法以及基于随机配置网络的识别方法相比,所研究方法应用下的杰卡德系数更高,说明该方法辨识准确性更高。 展开更多
关键词 ESN神经网络 光通信网络 NetFlow流量数据 特征提取 安全态势辨识模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部