Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to...Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.展开更多
Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite sign...Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs.展开更多
OLED(Organic Light-Emitting Diode)屏幕COF(Chip on Film)连接过渡区的金属层在模组弯折阶段和可靠性验证阶段容易发生断裂,导致屏幕显示异常。本文采用试验设计(Design of Experiment,DOE)方法,以弯折成型状态和可靠性状态下的金属...OLED(Organic Light-Emitting Diode)屏幕COF(Chip on Film)连接过渡区的金属层在模组弯折阶段和可靠性验证阶段容易发生断裂,导致屏幕显示异常。本文采用试验设计(Design of Experiment,DOE)方法,以弯折成型状态和可靠性状态下的金属层应力最小作为试验指标,以泡棉厚度、泡棉偏移、金属包覆层(Metal Cover Layer,MCL)厚度和U型膜偏移作为影响因子,设计L9(34)正交试验方案,使用有限元方法对9组试验方案进行数值模拟和分析,并进行弯折成型和可靠性状态下的试验验证,最终获得了最优组合方案。有限元方法和试验结果表明,U型膜贴附偏移量对COF区的金属层弯折应力的影响最大,其次是泡棉厚度,再次是MCL厚度和泡棉贴附偏移量。最优组合方案在弯折成型和可靠性状态下皆具有最小的金属层应力,其值分别为57 MPa和523 MPa。最优组合方案的弯折成型和可靠性试验达到了100%的产品良品率,满足设计和生产要求。展开更多
Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra an...Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.展开更多
基金financial support from the National Natural Science Foundation of China(22105106)the Natural Science Foundation of Jiangsu Province of China(BK20210603)+1 种基金the Nanjing Science and Technology Innovation Project for overseas Students(NJKCZYZZ2022–05)the Start-up Funding from NUPTSF(NY221003)。
文摘Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.
基金supported by Guangdong Foundation of Basic and Applied Basic Research(2019B1515120023,2022B1515020041)National Natural Science Foundation of China(21975053,21975055,U2001222)for financial support
文摘Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs.
基金financial support from the National Natural Science Foundation of China(Nos.52303253 and 52273198)Yunnan Fundamental Research Project(No.202301BF070001-008)the Yunling Scholar Project of"Yunnan Revitalization Talent Support Program".
文摘Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.