随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLA...随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。展开更多
针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dyna...针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dynamic Window Approach)局部动态路径规划算法进行AGV路径规划与导航,使AGV叉车在未知环境或局部环境信息未知的环境中能快速识别目标位置并完成路径规划到达目标位置。实验结果表明,相较于改进前方法,文中所提方法在路径长度、耗费时间以及AGV叉车航向误差方面均有良好表现,路径长度平均减少12%,耗费时间平均减少约5%且AGV航向与目标航向的平均误差在5°以内。所提方法提高了AGV叉车在未知环境中的工作效率以及工作灵活性。展开更多
文摘随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。
文摘针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dynamic Window Approach)局部动态路径规划算法进行AGV路径规划与导航,使AGV叉车在未知环境或局部环境信息未知的环境中能快速识别目标位置并完成路径规划到达目标位置。实验结果表明,相较于改进前方法,文中所提方法在路径长度、耗费时间以及AGV叉车航向误差方面均有良好表现,路径长度平均减少12%,耗费时间平均减少约5%且AGV航向与目标航向的平均误差在5°以内。所提方法提高了AGV叉车在未知环境中的工作效率以及工作灵活性。