还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving window...还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm,SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,LSSVM校正模型预测结果最优,预测相关系数为0.984,预测标准差为0.223%,相对分析误差(standard deviation ratio,SDR)为5.62。结果表明:近红外光谱结合LSSVM算法提高了马铃薯全粉还原糖含量的预测精度。展开更多
文摘还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm,SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,LSSVM校正模型预测结果最优,预测相关系数为0.984,预测标准差为0.223%,相对分析误差(standard deviation ratio,SDR)为5.62。结果表明:近红外光谱结合LSSVM算法提高了马铃薯全粉还原糖含量的预测精度。