鸭蛋裂纹检测技术对于禽蛋加工工厂实现智能化蛋品检测、分级具有重要意义。该研究针对鸭蛋裂纹检测流程复杂、计算量大、模型尺寸大等问题,提出了一种基于改进YOLOv5l(you only look once version5 large)的轻量裂纹检测算法,通过在黑...鸭蛋裂纹检测技术对于禽蛋加工工厂实现智能化蛋品检测、分级具有重要意义。该研究针对鸭蛋裂纹检测流程复杂、计算量大、模型尺寸大等问题,提出了一种基于改进YOLOv5l(you only look once version5 large)的轻量裂纹检测算法,通过在黑暗条件下使用LED灯照射鸭蛋,根据裂纹蛋壳与完好蛋壳透光性不同产生的图像差异进行检测。通过在YOLOv5中引入Ghost_conv模块,大大减少了模型的浮点计算量和参数量,并在模型的骨干网络中加入ECA(efficient channel attention)注意力机制以及使用多尺度特征融合方法 BIFPN(bi-directional feature pyramid network),增加模型对有效信息的关注度,以提高算法检测精度。同时使用CIoU与α-IoU损失函数融合后替代YOLOv5原始GIoU函数加速回归预测。利用自建的鸭蛋裂纹数据集验证改进后模型的性能,结果表明,本研究提出的改进YOLOv5l网络模型检测精准率为93.8%,与原始YOLOv5l模型相比,检测精度提高了6.3个百分点,参数量和浮点计算量分别减少了30.6%、39.4%。检测帧速率为28.954帧/s,较原始YOLOv5l模型仅下降3.824帧/s。与其他的目标检测常用网络SSD(single shot multibox detector)、YOLOv4、Faster-RCNN(faster region convolutional neural networks)相比,精度分别提高了13.1、12.5、8.2个百分点。本研究提出的方法能够在低硬件资源条件下进行高精度检测,可为实际场景应用提供解决方案和技术支持。展开更多