期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的图像识别方法
被引量:
1
1
作者
胡翔
《信息与电脑》
2023年第1期190-192,共3页
为了提高图像识别的全面性及准确性,研究了一种基于卷积神经网络(Convolutional Neural Network,CNN)的图像识别方法。该方法利用萤火虫算法获取分割阈值,实现图像目标和背景的分割;利用灰度共生矩阵和基于加速分割测试的特征(Features ...
为了提高图像识别的全面性及准确性,研究了一种基于卷积神经网络(Convolutional Neural Network,CNN)的图像识别方法。该方法利用萤火虫算法获取分割阈值,实现图像目标和背景的分割;利用灰度共生矩阵和基于加速分割测试的特征(Features From Accelerated Segment Test,FAST)算法提取图像纹理和角点特征;以特征为输入,利用卷积神经网络实现目标类别识别。测试结果表明,设计的基于CNN的识别方法的F1分数为最大值,均在0.8以上,能够更全面、更准确地识别图像中的目标类型。
展开更多
关键词
卷积神经网络
图像分割
特征提取
图像识别
下载PDF
职称材料
题名
基于卷积神经网络的图像识别方法
被引量:
1
1
作者
胡翔
机构
安庆师范大学数理学院
出处
《信息与电脑》
2023年第1期190-192,共3页
文摘
为了提高图像识别的全面性及准确性,研究了一种基于卷积神经网络(Convolutional Neural Network,CNN)的图像识别方法。该方法利用萤火虫算法获取分割阈值,实现图像目标和背景的分割;利用灰度共生矩阵和基于加速分割测试的特征(Features From Accelerated Segment Test,FAST)算法提取图像纹理和角点特征;以特征为输入,利用卷积神经网络实现目标类别识别。测试结果表明,设计的基于CNN的识别方法的F1分数为最大值,均在0.8以上,能够更全面、更准确地识别图像中的目标类型。
关键词
卷积神经网络
图像分割
特征提取
图像识别
Keywords
convolution neural network
image segmentation
feature extraction
image recognition
分类号
TP524.22 [自动化与计算机技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的图像识别方法
胡翔
《信息与电脑》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部