针对现有周界入侵检测技术应用于私人住宅时面临的几个问题,提出一种面向庭院式住宅的周界入侵综合识别算法,该算法以YOLOv5为基础,将周界入侵检测任务分为异常目标检测与入侵检测两部分。在异常目标检测部分,针对YOLOv5在复杂户外场景...针对现有周界入侵检测技术应用于私人住宅时面临的几个问题,提出一种面向庭院式住宅的周界入侵综合识别算法,该算法以YOLOv5为基础,将周界入侵检测任务分为异常目标检测与入侵检测两部分。在异常目标检测部分,针对YOLOv5在复杂户外场景下对小目标检测效果不佳等问题对其网络结构进行三点改进,然后应用改进YOLOv5对监控范围内人员穿戴与所持工具是否异常进行检测,并根据结果判断是否存在潜在入侵行为;在入侵检测部分,提出一种点线式区域入侵检测方法,巧妙地将区域入侵检测问题抽象成点与多条直线围成区域的位置关系判断问题。实验结果表明:本文算法在异常目标检测阶段平均精度(mean average precision,mAP)为85.4%,相较于YOLOv5与其他目标检测算法精度更高;模型检测速度可达23.4帧/s,实时性良好;在入侵检测阶段,点线式区域入侵检测方法相较于现有基于视频的入侵检测方法具有更高的入侵检测灵敏度且不存在误检现象;基本满足对庭院式住宅进行周界入侵检测的任务需求。展开更多
文摘针对现有周界入侵检测技术应用于私人住宅时面临的几个问题,提出一种面向庭院式住宅的周界入侵综合识别算法,该算法以YOLOv5为基础,将周界入侵检测任务分为异常目标检测与入侵检测两部分。在异常目标检测部分,针对YOLOv5在复杂户外场景下对小目标检测效果不佳等问题对其网络结构进行三点改进,然后应用改进YOLOv5对监控范围内人员穿戴与所持工具是否异常进行检测,并根据结果判断是否存在潜在入侵行为;在入侵检测部分,提出一种点线式区域入侵检测方法,巧妙地将区域入侵检测问题抽象成点与多条直线围成区域的位置关系判断问题。实验结果表明:本文算法在异常目标检测阶段平均精度(mean average precision,mAP)为85.4%,相较于YOLOv5与其他目标检测算法精度更高;模型检测速度可达23.4帧/s,实时性良好;在入侵检测阶段,点线式区域入侵检测方法相较于现有基于视频的入侵检测方法具有更高的入侵检测灵敏度且不存在误检现象;基本满足对庭院式住宅进行周界入侵检测的任务需求。