CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf...CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.展开更多
基金supported by the National Natural Science Foundation of China(21978092)Chenguang Program by Educational Administration of Shanghai(21CGA35)Yangfan Program by Scientifical Administration of Shanghai(22YF1410300).
文摘CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.