The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.I...The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.展开更多
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10...A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.展开更多
基金funding support from National Natural Science Foundation of China(Project No.61574091)Wuxi River and Lake Management and Water Resources Management Center(Project No.JSXXCG2022-004).
文摘The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.
文摘A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.