The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele...The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.展开更多
Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benz...Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benzylamine to N-benzylidene benzylamine(N-BDBA)in ambient air under simulated solar light irradiation compared to pristine MoO_(3) or polyimide(PI).In particular,the MoPI composite with a 0.3:1 molar ratio of Mo to melamine,referred to as MoPI-0.3,demonstrated the best performance in the photo-oxidation of benzylamine,achieving a benzylamine conversion of 95%with a N-BDBA selectivity exceeding 99%after 3 h irradiation.The enhanced photocatalytic activity of the MoPI-0.3 catalyst was attributed to the formation of a direct Z-scheme heterojunction between MoO_(3) and PI,facilitating more efficient separation of the photoinduced electrons and holes.Additionally,the MoPI-0.3 composite maintained considerably high activity over four consecutive cycles,highlighting its good stability and recyclability.Furthermore,the MoPI-0.3 composite could photo-oxidize benzylamine derivatives and heterocyclic amines to their corresponding imines,demonstrating the universal applicability of this composite catalyst.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52161135302,22105087)the Postdoctoral Research Foundation of China(Grant No.2022M721360)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210446)。
文摘The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.
基金supported by the Opening Project of Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan (LZJ2101)the Fundamental Research Funds of China West Normal University (19D038)
文摘Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benzylamine to N-benzylidene benzylamine(N-BDBA)in ambient air under simulated solar light irradiation compared to pristine MoO_(3) or polyimide(PI).In particular,the MoPI composite with a 0.3:1 molar ratio of Mo to melamine,referred to as MoPI-0.3,demonstrated the best performance in the photo-oxidation of benzylamine,achieving a benzylamine conversion of 95%with a N-BDBA selectivity exceeding 99%after 3 h irradiation.The enhanced photocatalytic activity of the MoPI-0.3 catalyst was attributed to the formation of a direct Z-scheme heterojunction between MoO_(3) and PI,facilitating more efficient separation of the photoinduced electrons and holes.Additionally,the MoPI-0.3 composite maintained considerably high activity over four consecutive cycles,highlighting its good stability and recyclability.Furthermore,the MoPI-0.3 composite could photo-oxidize benzylamine derivatives and heterocyclic amines to their corresponding imines,demonstrating the universal applicability of this composite catalyst.