Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ...Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.展开更多
Four new norditerpenoid heterodimers with different dimerization patterns-namely,trigofragiloids A-C(denoted as compounds 1-3)and(+)-and(-)-trigofragiloid D(compound 4)-and three new phenanthrenone norditerpenoids-nam...Four new norditerpenoid heterodimers with different dimerization patterns-namely,trigofragiloids A-C(denoted as compounds 1-3)and(+)-and(-)-trigofragiloid D(compound 4)-and three new phenanthrenone norditerpenoids-namely,trigofragiloids E-G(compounds 5-7)-were isolated from Trigonostemon fragilis.Compounds 1 and 2 feature a novel heterodimeric carbon skeleton formed by the conjugation of a tetra-norditerpenoid and an ennea-norditerpenoid;they have been identified as class 2 atropisomers by means of quantum chemical calculations.Compound 3 is an unprecedented phenylpropanoid-norditerpenoid adduct with a new dimerization pattern.Compounds(+)-and(-)-4 are the first example of S-shaped 1,4-dioxane-fused norditerpenoid dimers.Inspired by the structure elucidation of compound 4,two co-occurring analogues,actephilol A and epiactephilol A,were structurally revised as a pair of geometrical isomers and were identified as two pairs of enantiomers,(+)-and(-)-8 and(+)-and(-)-9,respectively.Their structures were characterized using a combined method.Notably,compound 7 exhibits remarkable adenosine triphosphate-citrate lyase(ACLY)inhibition with a halfmaximal inhibition concentration(IC50)value of(0.46±0.11)lmol·L^(-1),as active as the positive control BMS-303141,and a molecular docking study offers deep insight into the interaction between compound 7 and ACLY.展开更多
Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-co...Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.展开更多
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i...Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.展开更多
Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammat...Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammation and anti-oxidation functions,and improving mitochondrial quality.Chronic diseases as non-communicable diseases are mainly caused by multiple factors,such as physiological decline and dysfunction in the body,and have become a significant challenge on public health worldwide.It is worth noting that chronic diseases such as Alzheimer's disease(AD),Parkinson's disease(PD),muscle atrophy,cardiovascular disease,obesity,and cancer are accompanied by abnormal mitochondrial function.Therefore,targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases.Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria,and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions.In this article,current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized,which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases.展开更多
Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunb...Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.展开更多
Rhodiola crenulate is the edible medicinal herbal medicine widely used for altitude sickness in China.Interestingly,our previous work has found that R.crenulate extract(RCE)could significantly improve the pathology as...Rhodiola crenulate is the edible medicinal herbal medicine widely used for altitude sickness in China.Interestingly,our previous work has found that R.crenulate extract(RCE)could significantly improve the pathology associated with dextran sulfate sodium-induced colitis.Thus,the current research aims to reveal the pharmacodynamic material basis of RCE,as well as its mechanism against colitis.The chemical characterization of RCE was performed by UHPLC-HR-MS,through which a total of 88 constituents were identified.Meanwhile,our results also found 29 constituents absorbed into blood and 8 metabolized absorbable compounds.The decreased flavonoids prototype and the elevated sulfated products of phenols were observed under pathophysiological conditions of colitis.The metabolomics study revealed that colitis caused the alternation of fatty acid metabolism,steroid hormone biosynthesis and bile acid metabolism.Correspondingly,RCE could prevent colitis by improving fatty acid metabolism and secondary bile acid metabolism.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(81973316,82173807)the China Postdoctoral Science Foundation(2020M681914)+1 种基金the Fund from Tianjin Municipal Health Commission(ZC200093)the Open Fund of Tianjin Central Hospital of Obstetrics and Gynecology/Tianjin Key Laboratory of human development and reproductive regulation(2021XHY01)。
文摘Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.
基金support from the National Natural Science Foundation of China(22237007 and 22177122)the Biological Resources Program of Chinese Academy of Sciences(CAS)(KFJ-BRP-008-001)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022282)is gratefully acknowledged.We thank Prof.Shi-Man Huang,Department of Biology,Hainan University,China,for the identification of the plant material.
文摘Four new norditerpenoid heterodimers with different dimerization patterns-namely,trigofragiloids A-C(denoted as compounds 1-3)and(+)-and(-)-trigofragiloid D(compound 4)-and three new phenanthrenone norditerpenoids-namely,trigofragiloids E-G(compounds 5-7)-were isolated from Trigonostemon fragilis.Compounds 1 and 2 feature a novel heterodimeric carbon skeleton formed by the conjugation of a tetra-norditerpenoid and an ennea-norditerpenoid;they have been identified as class 2 atropisomers by means of quantum chemical calculations.Compound 3 is an unprecedented phenylpropanoid-norditerpenoid adduct with a new dimerization pattern.Compounds(+)-and(-)-4 are the first example of S-shaped 1,4-dioxane-fused norditerpenoid dimers.Inspired by the structure elucidation of compound 4,two co-occurring analogues,actephilol A and epiactephilol A,were structurally revised as a pair of geometrical isomers and were identified as two pairs of enantiomers,(+)-and(-)-8 and(+)-and(-)-9,respectively.Their structures were characterized using a combined method.Notably,compound 7 exhibits remarkable adenosine triphosphate-citrate lyase(ACLY)inhibition with a halfmaximal inhibition concentration(IC50)value of(0.46±0.11)lmol·L^(-1),as active as the positive control BMS-303141,and a molecular docking study offers deep insight into the interaction between compound 7 and ACLY.
基金the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
文摘Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.
基金supported by the National Natural Science Foundation of China(22373104 and 22293024)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21821005)+1 种基金supported by the National Key Research and Development Program of China(2021YFE020527)support by the Distinguished Young Scholars of the National Natural Science Foundation of China(T2222022).
文摘Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.
基金supported by the National Natural Science Foundation of China(No.32071176)the 14th Five-Year-Plan Advantageous and Characteristic Disciplines(Groups)of Colleges and Universities in Hubei Province for Exercise and Brain Science from Hubei Provincial Department of Education+1 种基金the Chutian Scholar ProgramInnovative Start-Up Foundation from Wuhan Sports University to Ning Chen。
文摘Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammation and anti-oxidation functions,and improving mitochondrial quality.Chronic diseases as non-communicable diseases are mainly caused by multiple factors,such as physiological decline and dysfunction in the body,and have become a significant challenge on public health worldwide.It is worth noting that chronic diseases such as Alzheimer's disease(AD),Parkinson's disease(PD),muscle atrophy,cardiovascular disease,obesity,and cancer are accompanied by abnormal mitochondrial function.Therefore,targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases.Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria,and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions.In this article,current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized,which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases.
基金supported by Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(20220488)。
文摘Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.
基金supported by China Postdoctoral Science Foundation(2021M701759)Nanjing Medical University Science and Technology Development Fund(NMUB20210012)+4 种基金Jiangsu Provincial Outstanding Postdoctoral Programme(2022ZB430)National Natural Science Foundation of China(grant No.81873654,82201579)Open Research Fund of State Key Laboratory of Southwestern Chinese Medicine Resources(SKLTCM2022020)Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology(kjzr220009)Zhejiang Province Key Laboratory of Medical Electronics and Digital Health(MEDH2022016)。
文摘Rhodiola crenulate is the edible medicinal herbal medicine widely used for altitude sickness in China.Interestingly,our previous work has found that R.crenulate extract(RCE)could significantly improve the pathology associated with dextran sulfate sodium-induced colitis.Thus,the current research aims to reveal the pharmacodynamic material basis of RCE,as well as its mechanism against colitis.The chemical characterization of RCE was performed by UHPLC-HR-MS,through which a total of 88 constituents were identified.Meanwhile,our results also found 29 constituents absorbed into blood and 8 metabolized absorbable compounds.The decreased flavonoids prototype and the elevated sulfated products of phenols were observed under pathophysiological conditions of colitis.The metabolomics study revealed that colitis caused the alternation of fatty acid metabolism,steroid hormone biosynthesis and bile acid metabolism.Correspondingly,RCE could prevent colitis by improving fatty acid metabolism and secondary bile acid metabolism.