期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PCA-BP原理的混凝土碳化深度预测 被引量:1
1
作者 甘海龙 郭容宽 《科技通报》 2019年第12期144-149,154,共7页
混凝土碳化深度是钢筋混凝土结构耐久性评估的重要参数,影响混凝土碳化深度的因素主要有水灰比、水泥用量、混凝土抗压强度、碳化时间、水泥强度、温度与湿度。基于以上7个参数,并结合BP神经网络较好的预测性,以及主成分分析(PCA)能消... 混凝土碳化深度是钢筋混凝土结构耐久性评估的重要参数,影响混凝土碳化深度的因素主要有水灰比、水泥用量、混凝土抗压强度、碳化时间、水泥强度、温度与湿度。基于以上7个参数,并结合BP神经网络较好的预测性,以及主成分分析(PCA)能消除自变量间的多重共线性和降低输入数据维度的特点,建立了基于PCA-BP神经网络的混凝土碳化深度预测模型。以30组实测数据为例,对7个影响因素进行主成分分析,最终降为4个主成分,进而将其作为BP神经网络的输入因子,对混凝土碳化深度进行了预测。结果表明:PCA-BP神经网络预测误差低,实现了对混凝土碳化深度的较准确预测,PCA-BP神经网络模型为混凝土碳化深度预测提供了一种科学、可靠的方法。 展开更多
关键词 碳化深度 主成分分析法 BP神经网络 预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部