Evacuated tube transportation is an important development direction for the high-speed transportation technology of the future.However,a train running at supersonic speed in a closed tube can create an unstable aeroth...Evacuated tube transportation is an important development direction for the high-speed transportation technology of the future.However,a train running at supersonic speed in a closed tube can create an unstable aerothermal phenomenon,causing the temperature to rise sharply inside the tube and endangering the safe operation of trains and equipment.The blockage ratio is one of the key factors affecting the aerodynamic characteristics in the tube.In this paper,a 2 D axisymmetric model and Delayed Detached Eddy Simulation(DDES)based on the Shear Stress Transport(SST)k-ωturbulence model are used to study the aerothermal environment in the tube.The calculation method used in this paper was verified by a wind tunnel experiment.The aerothermal phenomenon and distribution of the flow field in the tube with different blockage ratios were compared and analysed.The results show that the aerothermal environment is significantly affected by the blockage ratio.A choking limit formed in the flow field will aggravate the aerodynamic phenomenon as the blockage ratio increases,which further deteriorates the aerothermal environment of the tube.Moreover,the existence of the choking limit,shock wave,and Mach disk make the flow field in the tube more complicated.展开更多
基金supported by the National Natural Science Foundation of China(51805453 and 51978575)the Fundamental Research Funds for the Central Universities(2682018CX14)+1 种基金Project funded by China Postdoctoral Science Foundation(2019M663551)Doctoral Innovation Fund Program of Southwest Jiaotong University。
文摘Evacuated tube transportation is an important development direction for the high-speed transportation technology of the future.However,a train running at supersonic speed in a closed tube can create an unstable aerothermal phenomenon,causing the temperature to rise sharply inside the tube and endangering the safe operation of trains and equipment.The blockage ratio is one of the key factors affecting the aerodynamic characteristics in the tube.In this paper,a 2 D axisymmetric model and Delayed Detached Eddy Simulation(DDES)based on the Shear Stress Transport(SST)k-ωturbulence model are used to study the aerothermal environment in the tube.The calculation method used in this paper was verified by a wind tunnel experiment.The aerothermal phenomenon and distribution of the flow field in the tube with different blockage ratios were compared and analysed.The results show that the aerothermal environment is significantly affected by the blockage ratio.A choking limit formed in the flow field will aggravate the aerodynamic phenomenon as the blockage ratio increases,which further deteriorates the aerothermal environment of the tube.Moreover,the existence of the choking limit,shock wave,and Mach disk make the flow field in the tube more complicated.