针对海上交通监控中船舶数量众多,且对具有潜在碰撞危险的船舶识别效率不高的问题,提出一种基于DBSCAN(带噪声的基于密度的空间聚类)的船舶会遇实时识别方法。根据海上交通风险监控的研究需求,分析船舶会遇局面的定义。运用墨卡托算法...针对海上交通监控中船舶数量众多,且对具有潜在碰撞危险的船舶识别效率不高的问题,提出一种基于DBSCAN(带噪声的基于密度的空间聚类)的船舶会遇实时识别方法。根据海上交通风险监控的研究需求,分析船舶会遇局面的定义。运用墨卡托算法计算船舶之间的距离,采用DBSCAN算法进行船舶会遇聚类识别。基于浙江舟山群岛西南海域航行船舶的AIS数据,对设置不同船舶会遇距离的试验结果进行比较分析,结果表明:当船舶会遇距离为1 n mile时,可以将56艘船划分为7个会遇船舶类,占船舶总数的32.1%,每个会遇船舶类包括2~3艘船。将该方法运用到实际海上交通监控中,可对每个会遇船舶类中的船舶航行动态进行重点关注,降低海上交通监控人员的工作负担,提高海上交通监控的效率。展开更多
文摘针对海上交通监控中船舶数量众多,且对具有潜在碰撞危险的船舶识别效率不高的问题,提出一种基于DBSCAN(带噪声的基于密度的空间聚类)的船舶会遇实时识别方法。根据海上交通风险监控的研究需求,分析船舶会遇局面的定义。运用墨卡托算法计算船舶之间的距离,采用DBSCAN算法进行船舶会遇聚类识别。基于浙江舟山群岛西南海域航行船舶的AIS数据,对设置不同船舶会遇距离的试验结果进行比较分析,结果表明:当船舶会遇距离为1 n mile时,可以将56艘船划分为7个会遇船舶类,占船舶总数的32.1%,每个会遇船舶类包括2~3艘船。将该方法运用到实际海上交通监控中,可对每个会遇船舶类中的船舶航行动态进行重点关注,降低海上交通监控人员的工作负担,提高海上交通监控的效率。