为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav...为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。展开更多
时差定位(Time Difference of Arrival,TDOA)是一种广泛应用的被动定位技术,具有定位精度高、组网能力强、系统鲁棒性强等特点。针对运动目标定位计算复杂、精度收敛较慢等问题,在给出视距(Line of Sight,LOS)环境下定位模型的基础上,...时差定位(Time Difference of Arrival,TDOA)是一种广泛应用的被动定位技术,具有定位精度高、组网能力强、系统鲁棒性强等特点。针对运动目标定位计算复杂、精度收敛较慢等问题,在给出视距(Line of Sight,LOS)环境下定位模型的基础上,提出了定位适用于多站时差定位系统的定位方法,该方法将组群时差定位关系方程合理地线性化为统计估计问题,利用在线迭代实时求解目标位置。给出了针对目标不同运动特性条件下的多平台协同定位算法及其仿真结果,仿真结果表明所述方法可以实现对目标的精确定位,并且分析了运动形式对于定位精度的影响,仿真结果对于系统的工程设计具有指导作用。展开更多
文摘为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。
文摘时差定位(Time Difference of Arrival,TDOA)是一种广泛应用的被动定位技术,具有定位精度高、组网能力强、系统鲁棒性强等特点。针对运动目标定位计算复杂、精度收敛较慢等问题,在给出视距(Line of Sight,LOS)环境下定位模型的基础上,提出了定位适用于多站时差定位系统的定位方法,该方法将组群时差定位关系方程合理地线性化为统计估计问题,利用在线迭代实时求解目标位置。给出了针对目标不同运动特性条件下的多平台协同定位算法及其仿真结果,仿真结果表明所述方法可以实现对目标的精确定位,并且分析了运动形式对于定位精度的影响,仿真结果对于系统的工程设计具有指导作用。