软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典...软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典型GNC方案及自主导航与控制技术主要进展;最后,针对未来的地外天体精确定点软着陆任务,提出了需要重点关注和发展的自主导航与控制关键技术,为未来技术发展提供借鉴和参考。展开更多
针对小行星探测器高精度自主视觉定位问题,提出了一种融合轨道动力学的深空探测器自主视觉定位方法,能修正视觉视觉定位与地图构建算法(simultaneous localization and mapping,SLAM)的定位误差。该方法通过融合轨道动力学的轨道改进技...针对小行星探测器高精度自主视觉定位问题,提出了一种融合轨道动力学的深空探测器自主视觉定位方法,能修正视觉视觉定位与地图构建算法(simultaneous localization and mapping,SLAM)的定位误差。该方法通过融合轨道动力学的轨道改进技术,能够在缺乏表面先验信息、无人工手动标记的场景下,实现探测器的高精度视觉导航,并建立小行星表面稠密三维模型。首先,基于视觉同时定位和建图方法(VSLAM)提取小行星表面特征,通过因子图优化算法估计探测器位姿,设计回环检测提高定位精度;其次,重构行星表面三维模型,实现基于多面体法的行星不规则引力场建模;最后,提出了一种基于轨道动力学的伪相对运动轨道优化算法,将其作为物理约束修正视觉定位累积误差,分析反演视觉初始定轨误差在轨道动力学中的传播过程,实现修正视觉定位累积误差,改善初始定位结果。仿真实验结果表明,融合轨道动力学可以有效提升小行星探测视觉定位的精度,从而实现高精度导航,为深空探测技术的未来发展提供参考借鉴。展开更多
为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机...为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机动过程中挠性模态及精确惯量不可知,采用模态观测器和转动惯量估计器对不可测的状态或参数进行辨识,辨识结果用于精确估计前馈补偿力矩,利用Lyapunov分析方法证明了闭环控制系统的稳定性。鉴于VSCMGs实际使用的力矩分配能力、避奇异能力、轮速平衡能力与末态框架角定位能力,分别设计了加权伪逆操纵律与3种对应的零运动。基于雅可比矩阵条件数提出了末态框架角的优选方法,给出了VSCMGs零运动在机动过程不同阶段的部署方案。结果表明:通过连续姿态机动数值仿真验证了所提算法的有效性;VSCMGs在连续机动过程中平滑切换模式,在不同的机动阶段实现了相应功能。模态观测值和惯量估计值在多次机动后收敛至真值附近,经过参数辨识后的控制器使航天器在机动末端更快更稳地达到指向精度要求。展开更多
文摘软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典型GNC方案及自主导航与控制技术主要进展;最后,针对未来的地外天体精确定点软着陆任务,提出了需要重点关注和发展的自主导航与控制关键技术,为未来技术发展提供借鉴和参考。
文摘针对小行星探测器高精度自主视觉定位问题,提出了一种融合轨道动力学的深空探测器自主视觉定位方法,能修正视觉视觉定位与地图构建算法(simultaneous localization and mapping,SLAM)的定位误差。该方法通过融合轨道动力学的轨道改进技术,能够在缺乏表面先验信息、无人工手动标记的场景下,实现探测器的高精度视觉导航,并建立小行星表面稠密三维模型。首先,基于视觉同时定位和建图方法(VSLAM)提取小行星表面特征,通过因子图优化算法估计探测器位姿,设计回环检测提高定位精度;其次,重构行星表面三维模型,实现基于多面体法的行星不规则引力场建模;最后,提出了一种基于轨道动力学的伪相对运动轨道优化算法,将其作为物理约束修正视觉定位累积误差,分析反演视觉初始定轨误差在轨道动力学中的传播过程,实现修正视觉定位累积误差,改善初始定位结果。仿真实验结果表明,融合轨道动力学可以有效提升小行星探测视觉定位的精度,从而实现高精度导航,为深空探测技术的未来发展提供参考借鉴。
文摘为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机动过程中挠性模态及精确惯量不可知,采用模态观测器和转动惯量估计器对不可测的状态或参数进行辨识,辨识结果用于精确估计前馈补偿力矩,利用Lyapunov分析方法证明了闭环控制系统的稳定性。鉴于VSCMGs实际使用的力矩分配能力、避奇异能力、轮速平衡能力与末态框架角定位能力,分别设计了加权伪逆操纵律与3种对应的零运动。基于雅可比矩阵条件数提出了末态框架角的优选方法,给出了VSCMGs零运动在机动过程不同阶段的部署方案。结果表明:通过连续姿态机动数值仿真验证了所提算法的有效性;VSCMGs在连续机动过程中平滑切换模式,在不同的机动阶段实现了相应功能。模态观测值和惯量估计值在多次机动后收敛至真值附近,经过参数辨识后的控制器使航天器在机动末端更快更稳地达到指向精度要求。