为了避免污水处理厂规模盲目扩大造成的投资效率低下的现象发生,科学地预测合理的用水量必不可少。基于用水量的实际历史数据,利用BDS检验、Box-Pierce检验和Box-Ljung检验以及非线性检验,如代替数据检验Surrogate date test、Hinich双...为了避免污水处理厂规模盲目扩大造成的投资效率低下的现象发生,科学地预测合理的用水量必不可少。基于用水量的实际历史数据,利用BDS检验、Box-Pierce检验和Box-Ljung检验以及非线性检验,如代替数据检验Surrogate date test、Hinich双谱检验、White人工神经网络检验来选择时间序列重构预测模型。根据实际用水量情况,比较各种不同重构模型预测误差,包括线性AR模型以及随机森林、随机梯度Boosting、支持向量、人工神经网络和自适应样条等。结果表明,有着非线性关系的人工神经网络误差最小,符合检验结果。展开更多
文摘为了避免污水处理厂规模盲目扩大造成的投资效率低下的现象发生,科学地预测合理的用水量必不可少。基于用水量的实际历史数据,利用BDS检验、Box-Pierce检验和Box-Ljung检验以及非线性检验,如代替数据检验Surrogate date test、Hinich双谱检验、White人工神经网络检验来选择时间序列重构预测模型。根据实际用水量情况,比较各种不同重构模型预测误差,包括线性AR模型以及随机森林、随机梯度Boosting、支持向量、人工神经网络和自适应样条等。结果表明,有着非线性关系的人工神经网络误差最小,符合检验结果。