Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ...Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.展开更多
High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realiz...High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.展开更多
The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying elec...The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.展开更多
Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides...Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity,simple synthesis route,and environmental benignity.However,the commercial development of the layered oxides is limited by sluggish kinetics,complex phase transition and poor air stability.Based on the research ideas from macro-to micro-scale,this review systematically summarizes the current optimization strategies of sodium-ion layered oxide cathodes(SLOC)from different dimensions:microstructure design,local chemistry regulation and structural unit construction.In the dimension of microstructure design,the various structures such as the microspheres,nanoplates,nanowires and exposed active facets are prepared to improve the slow kinetics and electrochemical performance.Besides,from the view of local chemistry regulation by chemical element substitution,the intrinsic electron/ion properties of SLOC have been enhanced to strengthen the structural stability.Furthermore,the optimization idea of endeavors to regulate the physical and chemical properties of cathode materials essentially is put forward from the dimension of structural unit construction.The opinions and strategies proposed in this review will provide some inspirations for the design of new SLOC in the future.展开更多
Safety issues related to flammable electrolytes in lithium-ion batteries(LIBs) remain a major challenge for their extended applications.The use of non-flammable phosphate-based electrolytes has proved the validity in ...Safety issues related to flammable electrolytes in lithium-ion batteries(LIBs) remain a major challenge for their extended applications.The use of non-flammable phosphate-based electrolytes has proved the validity in inhibiting the combustion of LIBs.However,the strong interaction between Li^(+) and phosphate leads to a dominant solid electrolyte interphase(SEI) with limited electronic shielding,resulting in the poor Li^(+) intercalation at the graphite(Gr) anode when using high-phosphate-content electrolytes.To mitigate this issue and improve Li^(+) insertion,we propose an “In-N-Out” strategy to render phosphates “noncoordinative”.By employing a combination of strongly polar solvents for a “block effect” and weakly polar solvents for a “drag effect”,we reduce the Li^(+)–phosphate interaction.As a result,phosphates remain in the electrolyte phase(“In”),minimizing their impact on the incompatibility with the Gr electrode(“Out”).We have developed a non-flammable electrolyte with high triethyl phosphate(TEP) content(>60 wt.%),demonstrating the excellent ion conductivity(5.94 mS cm^(-1) at 30 ℃) and reversible Li^(+) intercalation at a standard concentration(~1 mol L^(-1)).This approach enables the manipulation of multiple electrolyte functions and holds the promise for the development of safe electrochemical energy storage systems using non-flammable electrolytes.展开更多
Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-b...Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-based flow batteries are well suitable for stationary energy storage applications,since they feature the advantages of high safety,high cell voltage and low cost.Currently,many alkaline zinc-based flow batteries have been proposed and developed,e.g.,the alkaline zinc–iron flow battery and alkaline zinc–nickel flow battery.Their development and application are closely related to advanced materials and battery configurations.In this perspective,we will first provide a brief introduction and discussion of alkaline zinc-based flow batteries.Then we focus on these batteries from the perspective of their current status,challenges and prospects.The bottlenecks for these batteries are briefly analyzed.Combined with the practical requirements and development trends of alkaline zinc-based flow battery technologies,their future development and research direction will be summarized.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-058)the Basic Science Center Project of National Natural Science Foundation of China(52388201)+57 种基金the Beijing Natural Science Foundation(JQ22005)financially supported by the National Key R&D Program of China(2022YFB2404400)the National Natural Science Foundation of China(92263206,21875007,21975006,21974007,and U19A2018)the Youth Beijing Scholars program(PXM2021_014204_000023)the Beijing Natural Science Foundation(2222001 and KZ202010005007)supported by the National Key R&D Program of China(2021YFB2400200)the Youth Innovation Promotion Association CAS(2023040)the National Natural Science Foundation of China(22279148 and 21905286)the Beijing Natural Science Foundation(Z220021)supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program(2021YFB2500300,2021YFB2400300)National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua Universityfinancially supported by the National Key R&D Program of China(2021YFB2400300)National Natural Science Foundation of China(22179083)Program of Shanghai Academic Research Leader(20XD1401900)Key-Area Research and Development Program of Guangdong Province(2019B090908001)financially supported by the National Key R&D Program of China(2020YFE0204500)the National Natural Science Foundation of China(52071311,52271140)Jilin Province Science and Technology Development Plan Funding Project(20220201112GX)Changchun Science and Technology Development Plan Funding Project(21ZY06)Youth Innovation Promotion Association CAS(2020230,2021223)supported by the National Natural Science Foundation of China(51971124,52171217,52202284 and 52250710680)the State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)Zhejiang Natural Science Foundation(LZ21E010001,LQ23E020002)Wenzhou Natural Science Foundation(G20220019,G20220021,ZG2022032,G2023027)Science and Technology Project of State Grid Corporation of China(5419-202158503A-0-5-ZN)Wenzhou Key Scientific and Technological Innovation Research Projects(ZG2023053)Cooperation between industry and education project of Ministry of Education(220601318235513)supported by the Australian Research Council(DP210101486 and FL210100050)supported by the National Natural Science Foundation of China(22179135,22109168,52072195,and 21975271)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010603,XDA22010600)Taishan Scholars Program for Young Expert of Shandong Province(tsqn202103145)Shandong Energy Institute(SEI I202108 and SEI I202127)the China Postdoctoral Science Foundation(BX20200344,2020M682251)supported by the National Key R&D Program of China(2022YFB2402200)the National Natural Science Foundation of China(22121005,22020102002,and 21835004)the Frontiers Science Center for New Organic Matter of Nankai University(63181206)the Haihe Laboratory of Sustainable Chemical Transformationssupported by National Key Research and Development Program of China(2022YFB2404500)Shenzhen Outstanding Talents Training Fundsupported by the National Key R&D Program of China(2019YFA0705104)GRF under the project number City U 11305218supported from National Natural Science Foundation of China(22078313,21925804)Free exploring basic research project of Liaoning(2022JH6/100100005)Youth Innovation Promotion Association CAS(2019182)supported from the Research Center for industries of the Future(RCIF)at Westlake Universitythe start-up fund from Westlake Universitysupported by the National Key R&D Program of China(2020YFB2007400)the National Natural Science Foundation of China(22075317)the Strategic Priority Research Program(B)(XDB07030200)of Chinese Academy of Sciences。
文摘Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.
基金supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program of China(2021YFB2500300,2021YFB2400300)+8 种基金National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua University。
文摘High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.
基金supported by the National Key R&D Program of China(2021YFB2400200)the CAS Project for Young Scientists in Basic Research(YSBR-058)+4 种基金the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070300)the National Natural Science Foundation of China(22279148,21905286 and 22005314)the China Postdoctoral Science Foundation(2019M660805)the Special Financial Grant from the China Postdoctoral Science Foundation(2020T130658)Beijing National Laboratory for Molecular Sciences(2019BMS20022)。
文摘The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.
基金supported by the National Natural Science Foundation of China(51971124,52171217)the State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)+5 种基金the National Postdoctoral Program for Innovative Talents(BX20200222)the China Postdoctoral Science Foundation(2020M682878)Zhejiang Natural Science Foundation(LQ23E020002)Wenzhou Natural Science Foundation(G20220019)Cooperation between industry and education project of Ministry of Education(220601318235513)National Natural Science Foundation of China(52202284)。
文摘Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity,simple synthesis route,and environmental benignity.However,the commercial development of the layered oxides is limited by sluggish kinetics,complex phase transition and poor air stability.Based on the research ideas from macro-to micro-scale,this review systematically summarizes the current optimization strategies of sodium-ion layered oxide cathodes(SLOC)from different dimensions:microstructure design,local chemistry regulation and structural unit construction.In the dimension of microstructure design,the various structures such as the microspheres,nanoplates,nanowires and exposed active facets are prepared to improve the slow kinetics and electrochemical performance.Besides,from the view of local chemistry regulation by chemical element substitution,the intrinsic electron/ion properties of SLOC have been enhanced to strengthen the structural stability.Furthermore,the optimization idea of endeavors to regulate the physical and chemical properties of cathode materials essentially is put forward from the dimension of structural unit construction.The opinions and strategies proposed in this review will provide some inspirations for the design of new SLOC in the future.
基金supported by the National Key Research and Development Program of China (2022YFB2404800)the National Natural Science Foundation of China (52022013,51974031 and U22A20438)。
文摘Safety issues related to flammable electrolytes in lithium-ion batteries(LIBs) remain a major challenge for their extended applications.The use of non-flammable phosphate-based electrolytes has proved the validity in inhibiting the combustion of LIBs.However,the strong interaction between Li^(+) and phosphate leads to a dominant solid electrolyte interphase(SEI) with limited electronic shielding,resulting in the poor Li^(+) intercalation at the graphite(Gr) anode when using high-phosphate-content electrolytes.To mitigate this issue and improve Li^(+) insertion,we propose an “In-N-Out” strategy to render phosphates “noncoordinative”.By employing a combination of strongly polar solvents for a “block effect” and weakly polar solvents for a “drag effect”,we reduce the Li^(+)–phosphate interaction.As a result,phosphates remain in the electrolyte phase(“In”),minimizing their impact on the incompatibility with the Gr electrode(“Out”).We have developed a non-flammable electrolyte with high triethyl phosphate(TEP) content(>60 wt.%),demonstrating the excellent ion conductivity(5.94 mS cm^(-1) at 30 ℃) and reversible Li^(+) intercalation at a standard concentration(~1 mol L^(-1)).This approach enables the manipulation of multiple electrolyte functions and holds the promise for the development of safe electrochemical energy storage systems using non-flammable electrolytes.
基金supported by the Dalian Institute of Chemical Physics,Chinese Academy of Sciencesthe National Natural Science Foundation of China(22078313,21925804)+1 种基金Free exploring basic research project of Liaoning(2022JH6/100100005)Youth Innovation Promotion Association CAS(2019182)。
文摘Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-based flow batteries are well suitable for stationary energy storage applications,since they feature the advantages of high safety,high cell voltage and low cost.Currently,many alkaline zinc-based flow batteries have been proposed and developed,e.g.,the alkaline zinc–iron flow battery and alkaline zinc–nickel flow battery.Their development and application are closely related to advanced materials and battery configurations.In this perspective,we will first provide a brief introduction and discussion of alkaline zinc-based flow batteries.Then we focus on these batteries from the perspective of their current status,challenges and prospects.The bottlenecks for these batteries are briefly analyzed.Combined with the practical requirements and development trends of alkaline zinc-based flow battery technologies,their future development and research direction will be summarized.