期刊文献+

为您找到了以下期刊:

共找到2,423篇文章
< 1 2 122 >
每页显示 20 50 100
Ecosystem Services of Grazed Grasslands in the Flooding Pampa
1
作者 Elizabeth J.Jacobo Adriana M.Rodríguez 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1179-1202,共24页
The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina.Anthropo-genic interventions have led to severe degradation and,as a result,the ecosystem services provided by the gras... The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina.Anthropo-genic interventions have led to severe degradation and,as a result,the ecosystem services provided by the grass-lands are declining,in terms of provisioning,regulating,and supporting services.We synthesized the existing literature on the ecosystem goods and services provided by these grasslands under grazing in different conditions and conservation status.We found that plant and animal diversity and primary production are the most studied ecosystem services,while climate regulation,water supply,nutrient cycling,meat production and erosion control,in that order,are less studied.Cultural services are under-researched.Continuous grazing and glyphosate spraying are the main drivers of grassland degradation.Controlled grazing and conservative stocking rates have been shown to reverse degradation and demonstrate that livestock production is compatible with ecosystem conserva-tion by maintaining regulating and provisioning services.As these management strategies are poorly integrated,improving their implementation will require important changes in farmers’decisions and the development of policies that create the economic conditions for this to happen.Research is needed to understand the conditions that prevent the knowledge generated from being transferred to producers and translated into practices that would improve the provision of ecosystem services. 展开更多
关键词 Salado basin SUSTAINABILITY BIODIVERSITY RANGELANDS meat production adaptative multi paddock grazing process technologies AGROECOLOGY
下载PDF
The IDD Transcription Factors:Their Functions in Plant Development and Environmental Response
2
作者 Jing Liu Defeng Shu +5 位作者 Zilong Tan Mei Ma Huanhuan Yang Ning Guo Shipeng Li Dayong Cui 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期63-79,共17页
INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversi... INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture. 展开更多
关键词 INDETERMINATE DOMAIN flowering time root development shoot gravitropism plant immunity hormonal signaling environmental responses
下载PDF
Landscape of Sequence Variations in Homologous Copies of FAD2 and FAD3 in Rapeseed(Brassica napus L.)Germplasm with High/Low Linolenic Acid Trait
3
作者 Haoxue Wu Xiaohan Zhang +5 位作者 Xiaoyu Chen Kang Li Aixia Xu Zhen Huang Jungang Dong Chengyu Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期627-640,共14页
Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har... Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes. 展开更多
关键词 Brassica napus linolenic acid FAD2 FAD3 promoter coding sequences mutation
下载PDF
The Combination of Achnatherum inebrians Extracts and Soil Microorganisms Inhibited Seed Germination and Seedling Growth in Elymus nutans
4
作者 Rui Zhang Taixiang Chen +4 位作者 Zhenjiang Chen Hao Chen Xuekai Wei Malik Kamran Chunjie Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期567-580,共14页
In a greenhouse experiment,the effects of soil microorganisms and extracts of Achnatherum inebrians on the seed germination and seedling growth of Elymus nutans were studied.The results showed that both the extracts f... In a greenhouse experiment,the effects of soil microorganisms and extracts of Achnatherum inebrians on the seed germination and seedling growth of Elymus nutans were studied.The results showed that both the extracts from aboveground and belowground parts of A.inebrians significantly inhibited the germination rate,germination potential,germination index,vigor index,seedling height,root length,and fresh weight of E.nutans,but increased malondialdehyde content,catalase,peroxidase and superoxide dismutase activity of E.nutans seedlings(p<0.05).The allelopathy of aqueous extracts of the aboveground parts of A.inebrians was stronger than that of the pre-cipitates.Aqueous extracts of the aboveground parts of A.inebrians decreased seed germination rate,germination potential,germination index,vigor index,seedling length,root length,and seedling fresh weight by 10.45%-74.63%,24.18%-32.50%,19.03%-73.36%,37.83%-88.41%,21.42%-53.14%,2.65%-40.21%,and 20.45%-61.36%,respectively,and malondialdehyde content,peroxidase,catalase,and superoxide dismutase activity increased by 8.09%-62.24%,27.83%-86.47%,22.90%-93.17%,and 11.15%-75.91%,respectively.The above indexes were higher in live soil than in sterilized soil.Soil microorganisms increased the allelopathy of A.inebrians.The seed germination rate,germination potential,germination index,vigor index,seedling length,and seedling fresh weight of E.nutans planted in live soil decreased by 8.22%-48.48%,10.00%-51.85%,8.19%-53.26%,16.43%-60.03%,12.91%-28.81%,and 9.09%-22.86%compared with sterilized soil,respectively.Malondialdehyde content,peroxidase,catalase,and superoxide dismutase activity of E.nutans planted in live soil increased by 53.91%-81.06%,15.71%-57.34%,33.33%-86.31%,and 9.78%-52.51%compared with sterilized soil,respectively.The existence of soil microorganisms enhanced the allelopathy of the secondary metabolites of A.inebrians.A combination of microorganisms and aqueous extracts from the aboveground parts of A.inebrians had the strongest allelopathic effect on E.nutans. 展开更多
关键词 Achnatherum inebrians water immersion liquid aqueous leachate precipitate ALLELOPATHY Elymus nutans soil microorganisms
下载PDF
Quantitative and Qualitative Responses of Hydroponic Tomato Production to Different Levels of Salinity
5
作者 Khalid A.Al-Gaadi Ahmed M.Zeyada +4 位作者 ElKamil Tola Abdullah M.Alhamdan Khalid A.M.Ahmed Rangaswamy Madugundu Mohamed K.Edrris 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1311-1323,共13页
From economic and nutritional points of view,tomato is,historically,considered one of the most important crops.Without significant yield reduction,most commercial cultivars of tomato crops are sensitive to moderate lev... From economic and nutritional points of view,tomato is,historically,considered one of the most important crops.Without significant yield reduction,most commercial cultivars of tomato crops are sensitive to moderate levels of salinity.However,high levels of salt stress can negatively affect the yield and quality of tomato fruits.Therefore,this study was conducted to evaluate the yield and fruit quality of three tomato cultivars(Forester,Ghandowra-F1,and Feisty-Red)cultivated hydroponically,under three different levels of nutrient solution salinity.Evaluation of tomato fruits was performed based on quantity(number and weight of fruits,and total fruit yield),physical quality(color andfirmness),and chemical quality(refractometric index“Brix”,pH,EC,K^(+),Na^(+),and NO_(3)-).Experiments were conducted using three salinity levels of the nutrient solution with electrical conductivity values(dSm^(-1))of 2.5(control),6.0,and 9.5.Results showed that the studied tomato cultivars were significantly influenced by high salinity(9.5 dSm^(-1))in comparison to the low(2.5 dSm^(-1))and medium(6.0 dSm^(-1))levels of salinity.On average,the highest fruit weight per plant of 1944.84 g and total fruit yield of 4.42 kgm^(-2) were observed at the low salinity level;however,no significant differences were obtained in the two yield factors(single fruit weight and total fruit yield)for the low and medium salinity levels.On the other hand,a significant reduction in tomato yield(31%)was associated with the high salinity level compared to the yield at low and medium salinity levels.Results of physical quality parameters showed highly significant differences among all salinity levels.On average,the maximum value of color change(1.72)was associated with the medium salinity level,and the maximum value offirmness(9.61 Ncm^(-1))was recorded at the high salinity level.Salinity levels and tomato cultivars introduced significant differences in chemical quality parameters;however,no significant differences in these parameters were attributed to the low and medium salinity levels.The maximum value of pH was recorded for the combination of medium salinity and Forester cultivar.Moreover,the maximum values of Brix,EC,K^(+),Na^(+),-and NO_(3) were recorded for the Ghandowra-F1 cultivar at the high salinity level.Unlike the Feisty-Red,the performance of the Forester and Ghandowra-F1 cultivars was found to be acceptable at the tested medium salinity level(6.0 dSm^(-1)). 展开更多
关键词 Quality CULTIVARS YIELD color firmness BRIX
下载PDF
The NAC Transcription Factor ANAC089 Modulates Seed Vigor through the ABI5-VTC2 Module in Arabidopsis thaliana
6
作者 Yuan Tian Lulu Zhi +1 位作者 Ping Li Xiangyang Hu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1101-1116,共16页
Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of t... Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of toxic reactive oxygen species(ROS)to suppress seed germination.Controlled deterioration treatment(CDT)is a gen-eral approach for mimicking seed aging.The transcription factor ANAC089 was previously reported to modulate seed primary germination.In this study,we evaluated the ability of ANAC089 to control seed viability during aging.Compared with that in the wild-type line,the mutation of ANAC089 significantly increased H_(2)O_(2),thereby reducing seed viability after CDT,while the overexpression of ANAC089 reduced H_(2)O_(2) and improved seed long-evity,indicating a critical role for ANAC089 in maintaining seed viability through H_(2)O_(2) signaling.A series of stu-dies have shown that ANAC089 targets and negatively regulates the level of ABI5,an important transmitter of abscisic acid(ABA)signals,to affect seed viability after CDT.Furthermore,ABI5 negatively regulated the expres-sion of VTC2,which is involved in the biosynthesis of the antioxidant ascorbic acid and H_(2)O_(2) scavenging.As a result,ANAC089 attenuates the generation of H_(2)O_(2),thereby enhancing seed viability through the ABI5-VTC2 module during the seed aging process.Taken together,our results reveal a novel mechanism by which ANAC089 enhances seed viability by coordinating ABI5 and VTC2 expression,ultimately preventing the overac-cumulation of H_(2)O_(2),which would have led to reduced seed viability. 展开更多
关键词 ARABIDOPSIS seed aging ANAC089 ABI5 VTC2 H_(2)O_(2)
下载PDF
Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System
7
作者 Mingzhao Han Susilawati Kasim +4 位作者 Zhongming Yang Xi Deng Md Kamal Uddin Noor Baity Saidi Effyanti Mohd Shuib 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期213-226,共14页
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ... Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress. 展开更多
关键词 Drought biostimulants photosynthesis OSMOPROTECTANTS ANTIOXIDANTS MAIZE
下载PDF
Comparative Study of Genetic Structure and Genetic Diversity betweenWild and Cultivated Populations of Taxus cuspidata,Northeast China
8
作者 Dandan Wang Xiaohong Li Yanwen Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期355-369,共15页
Taxus cuspidata is a rare plant with important medicinal and ornamental value.Aiming at the obvious differences between wild and cultivated populations of T.cuspidata from Northeast China,a total of 61 samples,that is... Taxus cuspidata is a rare plant with important medicinal and ornamental value.Aiming at the obvious differences between wild and cultivated populations of T.cuspidata from Northeast China,a total of 61 samples,that is,33 wild yews and 28 cultivated yews were used to analyze the differences and correlations of the kinship,genetic diversity,and genetic structure between them by specific length amplified fragment sequencing(SLAF-seq).Finally,470725 polymorphic SLAF tags and 58622 valid SNP markers were obtained.Phylogenetic analysis showed that 61 samples were classified into 2 clusters:wild populations and cultivated populations,and some wild yews were categorized into the cultivated populations;the genetic diversity analysis showed that the Nei diversity index of wild populations(0.4068)was smaller than that of cultivated populations(0.4414),and the polymorphic information content(PIC)of wild populations(0.2861)was smaller than that of cultivated populations(0.3309).The genetic differentiation analysis showed that the total populations of gene diversity(H_(t))of cultivated and wild populations were respectively 0.8159 and 0.5685,the coefficient of gene differentiation(G_(st))of cultivated and wild populations was respectively 0.3021 and 0.1068,and the gene flow(N_(m))(2.4967)of wild populations was larger than cultivated populations(0.8199).The molecular variance(AMOVA)revealed that inter-population variation accounted for 29.57%of the total genetic variation,while intra-population variation accounted for 70.42% of the total genetic variation(p<0.001),this suggested that the genetic variation in the T.cuspidata is mainly attributed to within-population factors.In conclusion,the genetic distance between geographical ecological groups of wild populations was generally smaller than that of cultivated populations,and the degree of genetic diversity and genetic differentiation was smaller than that of cultivated populations.As evident,the utilization of SLAF-seq technology enables efficient and accurate development of SNP markers suitable for genetic analysis of T.cuspidata species.These developed SNP markers can provide a molecular foundation for T.cuspidata breeding,construction of genetic maps,variety identification,and association analysis of agronomic traits. 展开更多
关键词 T.cuspidata SLAF-seq SNP wild population cultivated population genetic structure
下载PDF
Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress
9
作者 Kaiyue Hong Yasmina Radani +2 位作者 Waqas Ahmad Ping Li Yuming Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期45-61,共17页
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo... Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress. 展开更多
关键词 Carbon monoxide nitric oxide AUXIN iron deficiency signal molecule PLANTS
下载PDF
Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types
10
作者 Eduardo Burgos-Valencia Federico García-Laynes +4 位作者 Ileana Echevarría-Machado Fatima Medina-Lara Miriam Monforte-González JoséNarváez-Zapata Manuel Martínez-Estévez 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期151-183,共33页
Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives the... Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives them industrial importance.Soil is an important factor that affects pepper development,nutritional quality,and capsaicinoid content.However,the effect of soil type on fruit development and capsaicinoid metabolism has been little understood.This work aimed to compare the effect of soils with contrasting characteristics,black soil(BS)and red soil(RS),on the expression of genes related to the development of fruits,and capsaicinoid synthesis using a transcriptomic analysis of the habanero pepper fruits.Plants growing in RS had bigger fruits and higher expression of genes related to floral development,fruit abscission,and softening which suggests that RS stimulates fruit development from early stages until maturation stages.Fruits from plants growing in BS had enrichment in metabolic pathways related to growth,sugars,and photosynthesis.Besides,these fruits had higher capsaicinoid accumulation at 25 days post-anthesis,and higher expression of genes related to the branched-chain amino acids metabolism(ketol-acid reductisomerase KARI),pentose phosphate pathway and production of NADPH(glucose-6-phosphate-1-dehydrogenase G6PDH),and proteasome and vesicular traffic in cells(26S proteasome regulatory subunit T4 RPT4),which suggest that BS is better in the early stimulation of pathways related to the nutritional quality and capsaicinoid metabolism in the fruits. 展开更多
关键词 Capsicum chinense jacq soil types plant growth environmental conditions fruit quality capsaicinoid metabolism TRANSCRIPTOME
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
11
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM NITRATE
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
12
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON NITROGEN PHOSPHORUS tea quality path analysis
下载PDF
Relationship between Seed Priming Mediated Seedling Vigor and Yield Performance of Spring Wheat
13
作者 Md.Parvez Anwar Masuma Akhter +5 位作者 Sharmin Aktar Sinthia Afsana Kheya A.K.M.Mominul Islam Sabina Yeasmin Ahmed Khairul Hasan Md.Harun Or Rashid 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1159-1177,共19页
Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective see... Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates. 展开更多
关键词 PRIMING seedling percentage GERMINATION growth YIELD WHEAT
下载PDF
Selenium Differentially Regulates Flavonoid Accumulation and Antioxidant Capacities in Sprouts of Twenty Diverse Mungbean(Vigna radiata(L.)Wilczek)Genotypes
14
作者 Fenglan Zhao Jizhi Jin +4 位作者 Meng Yang Franklin Eduardo Melo Santiago Jianping Xue Li Xu Yongbo Duan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期611-625,共15页
Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since... Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization. 展开更多
关键词 Antioxidant capacity gene expression genotypic variation isovitexin VITEXIN SELENIUM
下载PDF
Microbial Fertilizer: A Sustainable Strategy for Medicinal Plants Production
15
作者 Chuang Liu Jing Xie +4 位作者 Hao Liu Can Zhong Gen Pan Shuihan Zhang Jian Jin 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1221-1236,共16页
Medicinal plants have aroused considerable interest as an alternative to chemical drugs due to the beneficial effects of their active secondary metabolites.However,the extensive use of chemical fertilizers and pesticid... Medicinal plants have aroused considerable interest as an alternative to chemical drugs due to the beneficial effects of their active secondary metabolites.However,the extensive use of chemical fertilizers and pesticides in pursuit of yield has caused serious pollution to the environment,which is not conducive to sustainable devel-opment in thefield of medicinal plants.Microbial fertilizers are a type of“green fertilizer”containing specific microorganisms that can improve the soil microbial structure,enhance plant resistance to biological and abiotic stresses,and increase the yield of medicinal plants.The root exudates of medicinal plants attract different micro-organisms to the rhizosphere,which then migrate further to the plant tissues.These microbes can increase the levels of soil nutrients,and improve the physical and chemical properties of soil through nitrogenfixation,and phosphorus and potassium solubilization.In addition,soil microbes can promote the synthesis of hormones that increase plant growth and the accumulation of active compounds,eventually improving the quality of med-icinal plants.In 2022,the total value of the global microbial fertilizer market was$4.6 billion and is estimated to reach$10.36 billion by 2030.In this review,we have summarized the types of microbial fertilizers,the coloniza-tion and migration of microorganisms to plant tissues,and the beneficial effects of microbial fertilizers.In addi-tion,the prospects of developing microbial fertilizers and their application for medicinal plants have also been discussed.It aims to provide a reference for the rational application of microbial fertilizers in thefield of med-icinal plants and the green and sustainable development of medicinal plant resources. 展开更多
关键词 Microbial fertilizers market overview rhizosphere microorganisms endophytic bacteria beneficial effects
下载PDF
Endophytic Occupation in Nodules of Rhynchosia Plants from Semiarid Regions of Argentina
16
作者 Cinthia T.Lucero María de losÁ.Ruíz +3 位作者 Fabiola Pagliero Carolina Castaño Mariela L.Ambrosino Graciela S.Lorda 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1081-1099,共19页
Beneficial microbes can improve soil health by promoting soil structure,nutrient cycling,and disease suppression.In addition,a wide array of rhizospheric microbes are responsible for producing metabolically active comp... Beneficial microbes can improve soil health by promoting soil structure,nutrient cycling,and disease suppression.In addition,a wide array of rhizospheric microbes are responsible for producing metabolically active compounds including various types of plant growth regulators.So,microbial biodiversity studies could contribute to the improvement of agricultural practices in deprived areas,such as the Pampean semiarid region.The vast majority of studies conducted on endophytic microorganisms have focused on intensive crop legume species.In contrast,little attention has been paid to microorganisms of native legumes,whose ecology is not directly affected by human action.In this study,endophytic microorganisms isolated from root nodules of a selected native legume of the genus Rhynchosia were characterized.Viable isolates were studied with a focus on their plant growth-pro-moting rhizobacteria(PGPR)properties.Considering the edaphic characteristics of the Pampean semiarid region,the isolates obtained were evaluated for their ability to grow under three salt stress conditions(50,100,and 200 mM NaCl)and four different pH values(6,7,8,and 9).Based on their PGPR activities,the selected strains were phylogenetically grouped using BOX-PCR.The results showed great variability among the isolates in terms of the characteristics studied.Native legumes manifested a wide endophytic variability and remarkable perfor-mance in PGPR activities.We conclude that they could be used as potential bioinoculants for legume cultivation,an excellent alternative to the use of chemical fertilizers that currently pollute the environment. 展开更多
关键词 Native strains ENDOPHYTES PGPR native legumes stress
下载PDF
Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
17
作者 Yunhong Zhang Yonghui Yang Jiawei Mao 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期185-212,共28页
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ... Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture. 展开更多
关键词 Alginate oligosaccharides Triticum aestivum L. drought resistance TRANSCRIPTOMIC physiological analysis
下载PDF
A Bibliometric Analysis Unveils Valuable Insights into the Past,Present,and Future Dynamics of Plant Acclimation to Temperature
18
作者 Yong Cui Yongju Zhao +3 位作者 Shengnan Ouyang Changchang Shao Liangliang Li Honglang Duan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期291-312,共22页
Plant temperature acclimation is closely related to maintaining a positive carbon gain under future climate change.However,no systematic summary of the field has been conducted.Based on this,we analyzed data on plant ... Plant temperature acclimation is closely related to maintaining a positive carbon gain under future climate change.However,no systematic summary of the field has been conducted.Based on this,we analyzed data on plant temperature acclimation from the Web of Science Core Collection database using bibliometric software R,RStudio and VOSviewer.Our study demonstrated that a stabilized upward trajectory was noted in publications(298 papers)from 1986 to 2011,followed by a swift growth(373 papers)from 2012 to 2022.The most impactful journals were Plant Cell and Environment,boasting the greatest count of worldwide citations and articles,the highest H-index and G-index,followed by Global Change Biology and New Phytologist,and Frontiers in Plant Science which had the highest M-index.The USA and China were identified as the most influential countries,while Atkin was the most influential author,and the Chinese Academy of Sciences was the most influential research institution.The most cited articles were published in the Annual Review of Plant Biology in 1999.“Cold acclimation”was the most prominent keyword.Future plant temperature acclimation research is expected to focus on thermal acclimation and photosynthesis,which have important significance for future agricultural production,forestry carbon sequestration,and global food security.In general,this study provides a systematic insight of the advancement,trend,and future of plant temperature acclimation research,enhancing the comprehension of how plants will deal with forthcoming climate change. 展开更多
关键词 TEMPERATURE ACCLIMATION plant responses climate change BIBLIOMETRIC
下载PDF
Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data-A New Method for Inner Mongolia Typical Grasslands
19
作者 Ruochen Wang Jianjun Dong +3 位作者 Lishan Jin Yuyan Sun Taogetao Baoyin Xiumei Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期387-411,共25页
Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored t... Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass(AGB)estimation.In order to improve the accuracy of vegetation index inversion of grassland AGB,this study combined ground and Unmanned Aerial Vehicle(UAV)remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis.The narrow band vegetation indices were calculated,and ground and airborne hyperspectral inversion models were established.Finally,the accuracy of the model was verified.The results showed that:(1)The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB.(2)The comparison between measured R^(2) with the prediction R^(2) indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index(SAVI)as the independent variable in the analysis of AGB(fresh weight/dry weight)and four narrow-band vegetation indices.The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia.(3)The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data,where y=17.962e^(4.672x),the fitting R^(2) was 0.542,the prediction R^(2)was 0.424,and RMSE and REE were 57.03 and 0.65,respectively.Therefore,established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia.Compared with ground monitoring,airborne hyperspectral monitoring better reflects the inversion of actual surface biomass.It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management. 展开更多
关键词 Aboveground biomass inversion model vegetation index unmanned aerial vehicle typical grassland
下载PDF
Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems
20
作者 Jingcheng Zhang Xingjian Zhou +3 位作者 Dong Shen Qimeng Yu Lin Yuan Yingying Dong 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期745-762,共18页
As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as ... As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale. 展开更多
关键词 Rice bacterial leaf blight analysis of spectral response multispectral data simulation vegetation indices cross-sensor disease monitoring
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部