As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca...As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.展开更多
Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufac...Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.展开更多
This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand ...This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
Pomegranate rind is abundantly available as a waste material. Pomegranate Rind Extract (PRE) can be applied to cotton fabrics for its natural colours, as a mordanting agent and also for imparting certain functional pr...Pomegranate rind is abundantly available as a waste material. Pomegranate Rind Extract (PRE) can be applied to cotton fabrics for its natural colours, as a mordanting agent and also for imparting certain functional properties such as fire retardancy and antimicrobial properties. This paper reviews the feasibility of Pomegranate Rind Extract to improve the functional properties of cellulosic fabrics. Studies show that varying concentrations and higher temperatures that were used to apply the extract on the fabric, resulted in enhanced functional properties. At a particular concentration, the treated fabric showed a 15 times lower burning rate in comparison with the control fabric. Also, antimicrobial efficacy has been observed against Gram-positive and Gram-negative bacteria. Due to the natural colouring material, it can be used as a natural dye on cotton material. The fire retardancy of pomegranate rind extract was tested on jute material under varying alkalinity. Research has indicated that pomegranate rind extract could be used to dye polyamide as well. The rubbing and wash fastness of the finished fabrics is good. The light fastness was fair, and its antibacterial efficiency against tested bacteria was good.展开更多
Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conduct...Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future.展开更多
In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio...The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio compared to traditional steel, using fiber-reinforcement composite materials in automobile bodies has emerged as the most effective strategy for improving fuel efficiency while maintaining safety standards. This research paper examined the utilization of fiber-reinforced composite materials in car bodies to meet the increasing consumer demand for fuel-efficient and eco-friendly vehicles. It particularly focused on a carbon-aramid fiber-reinforced composite impact beam for passenger car side door impact protection. Despite the encouraging prospects of the carbon-aramid fiber-reinforced beam, the research uncovered substantial defects in the fabrication process, resulting in diminished load-bearing capacity and energy absorption. As a result, the beam was un-successful in three-point bending tests. This was accomplished by using an I cross-section design with varying thickness because of the higher area moment of inertia. Vacuum-assisted resin transfer molding (VARTM) manufacturing process was used and the finished beam underwent to three-point bending tests.展开更多
This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd&...In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.展开更多
The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To thi...The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data.展开更多
In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of struc...In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.展开更多
Fiber-reinforced polymer composites are used in a wide variety of applications due to their many advantages, such as relatively low production costs, ease of fabrication, and superior strength compared to pure polymer...Fiber-reinforced polymer composites are used in a wide variety of applications due to their many advantages, such as relatively low production costs, ease of fabrication, and superior strength compared to pure polymer resins. Polymer reinforcement can be either synthetic or natural. Synthetic fibers such as carbon have high specific strength, but their application fields are limited due to their high manufacturing cost. Recently, interest in recycled fiber-based composites has increased due to their many advantages. In this context, research has been carried out to better utilize non-woven and paper-based materials to make value-added products. The aim of the current research work is to compare the mechanical performance of non-woven and paper-based reinforced epoxy composites manufactured by the VARTM process. Mechanical properties such as tensile strength, flexural strength (using three-point bending), impact strength, hardness strength, and water absorption were measured. A multi-criteria decision approach called TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) was used to select the best alternative from the investigated materials.展开更多
This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for sh...This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.展开更多
In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construc...In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.展开更多
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
The hydration of cement generates heat due to the exothermic nature of the hydration process. Poor heat dissipation in mass concrete results in a temperature gradient between the inner core and the outer surface of th...The hydration of cement generates heat due to the exothermic nature of the hydration process. Poor heat dissipation in mass concrete results in a temperature gradient between the inner core and the outer surface of the element. High temperature gradients generate tensile stresses that may exceed the tensile strength of concrete thus leading to thermal cracking. The present paper is an attempt to understand the thermal (heat sink property) and microstructural changes in the hydrated graphene-Portland cement composites. Thermal diffusivity and electrical conductivity of the hydrated graphene-cement composite were measured at various graphene to cement ratios. The mass-volume method was implemented to measure the density of the hydrated graphene-cement composite. Particle size distribution of Portland cement was measured by using a laser scattering particle size analyzer. Heat of hydration of Portland cement was assessed by using a TAMAIR isothermal conduction calorimeter. Scanning electron microscopy (SEM) was implemented to study microstructural changes of the hydrated graphene-cement composites. The mineralogy of graphene-cement and the hydrated graphene-cement composites was investigated by using X-ray diffraction. The findings indicate that incorporation of graphene enhances the thermal properties of the hydrated cement indicating a potential for reduction in early age thermal cracking and durability improvement of the concrete structures.展开更多
A hybrimer based on epoxy resin and phenyl-siloxane was prepared by polymerization and a solgel condensation reaction in which Eporite-904 (807 g/eq) bisphenol-A-type epoxy resin, 3-isocyanatopropyltriethoxysilane (IP...A hybrimer based on epoxy resin and phenyl-siloxane was prepared by polymerization and a solgel condensation reaction in which Eporite-904 (807 g/eq) bisphenol-A-type epoxy resin, 3-isocyanatopropyltriethoxysilane (IPTES) and phenyltriethoxysilane (PTEOS) acted as precursors. The thermal and optical properties of the epoxy/siloxane hybrimer were studied. The thermogravimetric analysis (TGA) results implied that the hybrimer could increase the crosslink density and enhance the thermal properties. The optical properties were measured after thermal and UV aging. The refractive indexes of the epoxy/siloxane hybrimers were 1.66 - 1.70, and the transmittances of the cured hybrimers were above 90% in the visible wavelength. After a 120°C/24-h thermal aging test, the decreases in the refractive index and transmittance were less than 5% and 20% respectively. The epoxy/siloxane hybrimers also showed low discoloration upon thermal aging at 120°C for 24 h under an air atmosphere.展开更多
The present study reports the formation of ultrafine hard particles of nanocomposite WC with different additions of ZrO2 powders (0.5 - 20 vol.%). The initial mixed powders of WC with the desired ZrO2 concentrations w...The present study reports the formation of ultrafine hard particles of nanocomposite WC with different additions of ZrO2 powders (0.5 - 20 vol.%). The initial mixed powders of WC with the desired ZrO2 concentrations were mechanically mixed for 360 ks (end-product) under argon gas atmosphere at room temperature, using high energy ball mill. The end-product consists of average grain size of about 17 nm in diameter. The obtained nanocomposite powders were consolidated into fully dense compact, using spark plasma sintering (SPS) technique in vacuum. The experimental results revealed that the consolidation step, which was conducted at 1673 K with uniaxial pressure ranging from 19.6 to 38.2 MPa for short time (0.18 ks), does not lead to dramatic grain growth in the powders so that the consolidated nanocomposite bulk objects maintain their nanocrystalline behavior, being fine grains with an average size of 63 nm in diameter. The relative densities of consolidated nanocomposite WC/ZrO2 materials increase from 99.1% for WC-0.5% ZrO2 to 99.93% for WC-20% ZrO2. The indentation fracture toughness of the composites can be tailored between 7.31 and 19.46 MPa/m1/2 by controlling the volume fraction of ZrO2 matrix from 0.5% to 20%. The results show that the Poisson’s ratio increased monotonically with increasing the ZrO2 concentrations to get a maximum value of 0.268 for WC-20% ZrO2. In the whole range of ZrO2 concentrations (0.5 - 20 vol.%), high hardness values (20.73 to 22.83 GPa) were achieved. The Young’s modulus tends to decrease with increasing the volume fraction of the ZrO2 matrix to reach a minimum value of 583.2 GPa for WC-20% ZrO2. These hard and tough WC/ZrO2 nanocomposites are proposed to be employed as higher abrasive-wear resistant materials.展开更多
This article presents a three-dimensional extended finite element (XFEM) approach for numerical simulation of delamination in unidirectional composites under fracture mode I. A cohesive zone model in front of the crac...This article presents a three-dimensional extended finite element (XFEM) approach for numerical simulation of delamination in unidirectional composites under fracture mode I. A cohesive zone model in front of the crack tip is used to include interface material nonlinearities. To avoid instability during simulations, a critical cohesive zone length is defined such that user-defined XFEM elements are only activated along the crack tip inside this zone. To demonstrate the accuracy of the new approach, XFEM results are compared to a set of benchmark experimental data from the literature as well as conventional FEM, mesh free, and interface element approaches. To evaluate the effect of modeling parameters, a set of sensitivity analyses have also been performed on the penalty stiffness factor, critical cohesive zone length, and mesh size. It has been discussed how the same model can be used for other fracture modes when both opening and contact mechanisms are active.展开更多
文摘As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.
文摘Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.
文摘This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.
文摘Pomegranate rind is abundantly available as a waste material. Pomegranate Rind Extract (PRE) can be applied to cotton fabrics for its natural colours, as a mordanting agent and also for imparting certain functional properties such as fire retardancy and antimicrobial properties. This paper reviews the feasibility of Pomegranate Rind Extract to improve the functional properties of cellulosic fabrics. Studies show that varying concentrations and higher temperatures that were used to apply the extract on the fabric, resulted in enhanced functional properties. At a particular concentration, the treated fabric showed a 15 times lower burning rate in comparison with the control fabric. Also, antimicrobial efficacy has been observed against Gram-positive and Gram-negative bacteria. Due to the natural colouring material, it can be used as a natural dye on cotton material. The fire retardancy of pomegranate rind extract was tested on jute material under varying alkalinity. Research has indicated that pomegranate rind extract could be used to dye polyamide as well. The rubbing and wash fastness of the finished fabrics is good. The light fastness was fair, and its antibacterial efficiency against tested bacteria was good.
文摘Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future.
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
文摘The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio compared to traditional steel, using fiber-reinforcement composite materials in automobile bodies has emerged as the most effective strategy for improving fuel efficiency while maintaining safety standards. This research paper examined the utilization of fiber-reinforced composite materials in car bodies to meet the increasing consumer demand for fuel-efficient and eco-friendly vehicles. It particularly focused on a carbon-aramid fiber-reinforced composite impact beam for passenger car side door impact protection. Despite the encouraging prospects of the carbon-aramid fiber-reinforced beam, the research uncovered substantial defects in the fabrication process, resulting in diminished load-bearing capacity and energy absorption. As a result, the beam was un-successful in three-point bending tests. This was accomplished by using an I cross-section design with varying thickness because of the higher area moment of inertia. Vacuum-assisted resin transfer molding (VARTM) manufacturing process was used and the finished beam underwent to three-point bending tests.
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
文摘In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.
文摘The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data.
文摘In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.
文摘Fiber-reinforced polymer composites are used in a wide variety of applications due to their many advantages, such as relatively low production costs, ease of fabrication, and superior strength compared to pure polymer resins. Polymer reinforcement can be either synthetic or natural. Synthetic fibers such as carbon have high specific strength, but their application fields are limited due to their high manufacturing cost. Recently, interest in recycled fiber-based composites has increased due to their many advantages. In this context, research has been carried out to better utilize non-woven and paper-based materials to make value-added products. The aim of the current research work is to compare the mechanical performance of non-woven and paper-based reinforced epoxy composites manufactured by the VARTM process. Mechanical properties such as tensile strength, flexural strength (using three-point bending), impact strength, hardness strength, and water absorption were measured. A multi-criteria decision approach called TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) was used to select the best alternative from the investigated materials.
文摘This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.
文摘In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
文摘The hydration of cement generates heat due to the exothermic nature of the hydration process. Poor heat dissipation in mass concrete results in a temperature gradient between the inner core and the outer surface of the element. High temperature gradients generate tensile stresses that may exceed the tensile strength of concrete thus leading to thermal cracking. The present paper is an attempt to understand the thermal (heat sink property) and microstructural changes in the hydrated graphene-Portland cement composites. Thermal diffusivity and electrical conductivity of the hydrated graphene-cement composite were measured at various graphene to cement ratios. The mass-volume method was implemented to measure the density of the hydrated graphene-cement composite. Particle size distribution of Portland cement was measured by using a laser scattering particle size analyzer. Heat of hydration of Portland cement was assessed by using a TAMAIR isothermal conduction calorimeter. Scanning electron microscopy (SEM) was implemented to study microstructural changes of the hydrated graphene-cement composites. The mineralogy of graphene-cement and the hydrated graphene-cement composites was investigated by using X-ray diffraction. The findings indicate that incorporation of graphene enhances the thermal properties of the hydrated cement indicating a potential for reduction in early age thermal cracking and durability improvement of the concrete structures.
文摘A hybrimer based on epoxy resin and phenyl-siloxane was prepared by polymerization and a solgel condensation reaction in which Eporite-904 (807 g/eq) bisphenol-A-type epoxy resin, 3-isocyanatopropyltriethoxysilane (IPTES) and phenyltriethoxysilane (PTEOS) acted as precursors. The thermal and optical properties of the epoxy/siloxane hybrimer were studied. The thermogravimetric analysis (TGA) results implied that the hybrimer could increase the crosslink density and enhance the thermal properties. The optical properties were measured after thermal and UV aging. The refractive indexes of the epoxy/siloxane hybrimers were 1.66 - 1.70, and the transmittances of the cured hybrimers were above 90% in the visible wavelength. After a 120°C/24-h thermal aging test, the decreases in the refractive index and transmittance were less than 5% and 20% respectively. The epoxy/siloxane hybrimers also showed low discoloration upon thermal aging at 120°C for 24 h under an air atmosphere.
文摘The present study reports the formation of ultrafine hard particles of nanocomposite WC with different additions of ZrO2 powders (0.5 - 20 vol.%). The initial mixed powders of WC with the desired ZrO2 concentrations were mechanically mixed for 360 ks (end-product) under argon gas atmosphere at room temperature, using high energy ball mill. The end-product consists of average grain size of about 17 nm in diameter. The obtained nanocomposite powders were consolidated into fully dense compact, using spark plasma sintering (SPS) technique in vacuum. The experimental results revealed that the consolidation step, which was conducted at 1673 K with uniaxial pressure ranging from 19.6 to 38.2 MPa for short time (0.18 ks), does not lead to dramatic grain growth in the powders so that the consolidated nanocomposite bulk objects maintain their nanocrystalline behavior, being fine grains with an average size of 63 nm in diameter. The relative densities of consolidated nanocomposite WC/ZrO2 materials increase from 99.1% for WC-0.5% ZrO2 to 99.93% for WC-20% ZrO2. The indentation fracture toughness of the composites can be tailored between 7.31 and 19.46 MPa/m1/2 by controlling the volume fraction of ZrO2 matrix from 0.5% to 20%. The results show that the Poisson’s ratio increased monotonically with increasing the ZrO2 concentrations to get a maximum value of 0.268 for WC-20% ZrO2. In the whole range of ZrO2 concentrations (0.5 - 20 vol.%), high hardness values (20.73 to 22.83 GPa) were achieved. The Young’s modulus tends to decrease with increasing the volume fraction of the ZrO2 matrix to reach a minimum value of 583.2 GPa for WC-20% ZrO2. These hard and tough WC/ZrO2 nanocomposites are proposed to be employed as higher abrasive-wear resistant materials.
文摘This article presents a three-dimensional extended finite element (XFEM) approach for numerical simulation of delamination in unidirectional composites under fracture mode I. A cohesive zone model in front of the crack tip is used to include interface material nonlinearities. To avoid instability during simulations, a critical cohesive zone length is defined such that user-defined XFEM elements are only activated along the crack tip inside this zone. To demonstrate the accuracy of the new approach, XFEM results are compared to a set of benchmark experimental data from the literature as well as conventional FEM, mesh free, and interface element approaches. To evaluate the effect of modeling parameters, a set of sensitivity analyses have also been performed on the penalty stiffness factor, critical cohesive zone length, and mesh size. It has been discussed how the same model can be used for other fracture modes when both opening and contact mechanisms are active.