An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results ...An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.展开更多
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top...Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen.展开更多
Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well...Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design.展开更多
With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
AIM:To determine the association between Helicobacter pylori(H.pylori)and globus sensation(GS)in the patients with cervical inlet patch. METHODS:Sixty-eight patients with esophageal inlet patches were identified from ...AIM:To determine the association between Helicobacter pylori(H.pylori)and globus sensation(GS)in the patients with cervical inlet patch. METHODS:Sixty-eight patients with esophageal inlet patches were identified from 6760 consecutive patients undergoing upper gastrointestinal endoscopy prospectively.In these 68 patients with cervical inlet patches, symptoms of globus sensation(lump in the throat), hoarseness,sore throat,frequent clearing of the throat,cough,dysphagia,odynophagia of at least 3 mo duration was questioned prior to endoscopy. RESULTS:Cervical heterotopic gastric mucosa(CHGM) was found in 68 of 6760 patients.The endoscopic prevalence of CHGM was determined to be 1%.H.pylori was identified in 16(23.5%)of 68 patients with inlet patch.53 patients were classified as CHGMⅡ.This group included 48 patients with globus sensation,4 patients with chronic cough and 1 patient with hoarseness.All the patients who were H.pylori(+)in cervical inlet patches had globus sensation.CONCLUSION:Often patients with CHGM have a long history of troublesome throat symptoms.We speculate that disturbances in globus sensation are like non-ulcer dyspepsia.展开更多
In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pr...In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.展开更多
In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the t...In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the total pressure distribution at the exit of the inlet, the structure of the inner flow and the effects of the boundary layer along the fuselage on the performance of the inlet. Moreover, in comparison with the experimental data at different angles of attack, yaws and mass flow ratios, the reliabilities of the computational fluid dynamics(CFD) studied are verified. Results indicate: (1) the CFD results agree well with the experiment results and the relative errors of the total pressure coefficient is less than 1% ; (2) at the inlet's exit, the contour of total pressure obtained by CFD is similar to the experiment result except the contour in the low total pressure zone in CFD is slightly larger; (3) the secondary flow at the cross section behave as two counter-rotating vortices. Along the flow direction, the fields influenced by the vortex pair transport downstream and expand to the whole section at the exit; (4) the total pressure loss at the exit of the submerged inlet can be divided into external loss and internal loss. Usually, the external loss is greater than the internal loss, and both decrease with the augment of the Mach number at the exit. In addition, when the angle of attack ranges from -2° to 8°, the total pressure coefficient ascends gradually, due to the reduction of the external loss caused by the less boundary layer flow captured and the invisible change of the internal loss.展开更多
The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In th...The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.展开更多
Cervical inlet patch(CIP), also referred to as esophageal heterotopic gastric mucosa, is regarded as the residue of columnar epithelium of the embryonic esophagus. Narrow band imaging increases the detection rate of C...Cervical inlet patch(CIP), also referred to as esophageal heterotopic gastric mucosa, is regarded as the residue of columnar epithelium of the embryonic esophagus. Narrow band imaging increases the detection rate of CIP. Herein, we present a 55-year-old man with symptomatic circumferential inlet patch. He exhibited globus and dysphagia, and esophagogastroduodenoscopy found cir-cumferential CIP, where im-munohistochemistry revealed the existence of pro-ton pumps(H^+, K^+ -ATPase). His throat symptoms were relieved by acid suppressive therapy with pump inhibitors. This case indicated that CIP should be considered as a differential diagnosis for the cause of globus symptoms in rare cases.展开更多
A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of...A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.展开更多
The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass...The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.展开更多
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dim...The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.展开更多
The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 o...The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 of these tidal inlets, the best regression equation is A(km2) = 0.845 />(km3)1.20. The analysis shows that C and n are little different from those in the P-A relationship for the inlets of the South China Sea and East China Sea coasts. It is noted that the relationship between P and A is unstable because of the difference in sediment abundance. The study shows that a united P-A relationship can be obtained for the tidal inlets of lagoon type and bay-drowned-valley type, not containing some half-circle shape bays which confront deep water. These half-circle bays do not belong to tidal inlets because they do not have enough sediment abundance and are fairly open.展开更多
The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,whi...The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.展开更多
The proximal esophagus is rarely examined,and its inspection is often inadequate.Optical chromoendoscopy techniques such as narrow band imaging improve the detection rate of inlet patches in the proximal esophagus,a r...The proximal esophagus is rarely examined,and its inspection is often inadequate.Optical chromoendoscopy techniques such as narrow band imaging improve the detection rate of inlet patches in the proximal esophagus,a region in which their prevalence is likely underestimated.Various studies have reported correlations between these esophageal marks with different issues such as Barrett’s esophagus,but these findings remain controversial.Conflicting reports complicate the process of interpreting the clinical features of esophageal inlet patches and underestimate their importance.Unfortunately,the limited clinical data and statistical analyses make reaching any conclusions difficult.It is hypothesized that inlet patches are correlated with various esophageal and extraesophageal symptoms,diagnoses and the personalized therapeutic management of patients with inlet patches as well as the differential diagnosis for premalignant lesions or early cancers.Due to its potential underdiagnosis,there are no consensus guidelines for the management and follow up of inlet patches.This review focuses on questions that were raised from published literature on esophageal inlet patches in adults.展开更多
As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a vol...As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designed and simulated numerically to investigate the characteristics of the coupled flow field. The results show that the wheel efficiency of single passage computation without the volute is 80.1%. After accounting for the factors of the loss caused by the volute and the interaction between each passage, the performance is more accurate according to the whole flow passage computation with the volute. High load region gathers at the mid-span and the efficiency declines to 76.6%. The performance of the volute whose structure angle of the trapezoid section is equal to 70 degree is better. Unlike uniform inlet condition in single passage, more appropriate inlet flow for the impeller is provided by the rectification effect of the volute in full passage calculation. Flow parameters are distributed more evenly along the blade span and are generally consistent between each passage at the outlet of the turbine.展开更多
Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hyd...Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hydrocyclone and separation efficiency & pressure loss, the highest efficiency is obtained from the inlet of an involute curve with increasing depth-width ratio from the three types, in which the separation efficiency and pressure loss all drops slowly, for the length of the channel decreases, while it drops rapidly in the other two. The flow guiding ability of the inlet affects the separation efficiency greatly, so the corresponding involute type of inlet of hydrocyclone fits for downhole oil-water separation is optimized, which serves as a basis for the structural design of downhole hydrocyclone.展开更多
Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In t...Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.展开更多
基金National Basic Research Program of China (5130802)
文摘An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.
文摘Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen.
文摘Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design.
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
文摘AIM:To determine the association between Helicobacter pylori(H.pylori)and globus sensation(GS)in the patients with cervical inlet patch. METHODS:Sixty-eight patients with esophageal inlet patches were identified from 6760 consecutive patients undergoing upper gastrointestinal endoscopy prospectively.In these 68 patients with cervical inlet patches, symptoms of globus sensation(lump in the throat), hoarseness,sore throat,frequent clearing of the throat,cough,dysphagia,odynophagia of at least 3 mo duration was questioned prior to endoscopy. RESULTS:Cervical heterotopic gastric mucosa(CHGM) was found in 68 of 6760 patients.The endoscopic prevalence of CHGM was determined to be 1%.H.pylori was identified in 16(23.5%)of 68 patients with inlet patch.53 patients were classified as CHGMⅡ.This group included 48 patients with globus sensation,4 patients with chronic cough and 1 patient with hoarseness.All the patients who were H.pylori(+)in cervical inlet patches had globus sensation.CONCLUSION:Often patients with CHGM have a long history of troublesome throat symptoms.We speculate that disturbances in globus sensation are like non-ulcer dyspepsia.
文摘In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.
文摘In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the total pressure distribution at the exit of the inlet, the structure of the inner flow and the effects of the boundary layer along the fuselage on the performance of the inlet. Moreover, in comparison with the experimental data at different angles of attack, yaws and mass flow ratios, the reliabilities of the computational fluid dynamics(CFD) studied are verified. Results indicate: (1) the CFD results agree well with the experiment results and the relative errors of the total pressure coefficient is less than 1% ; (2) at the inlet's exit, the contour of total pressure obtained by CFD is similar to the experiment result except the contour in the low total pressure zone in CFD is slightly larger; (3) the secondary flow at the cross section behave as two counter-rotating vortices. Along the flow direction, the fields influenced by the vortex pair transport downstream and expand to the whole section at the exit; (4) the total pressure loss at the exit of the submerged inlet can be divided into external loss and internal loss. Usually, the external loss is greater than the internal loss, and both decrease with the augment of the Mach number at the exit. In addition, when the angle of attack ranges from -2° to 8°, the total pressure coefficient ascends gradually, due to the reduction of the external loss caused by the less boundary layer flow captured and the invisible change of the internal loss.
基金ThisresearchprojectwasgrantedjointlybytheStartingFundsforBack From AbroadDoctorssponsoredbytheQingdaoUni versityandtheNationalOu
文摘The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.
文摘Cervical inlet patch(CIP), also referred to as esophageal heterotopic gastric mucosa, is regarded as the residue of columnar epithelium of the embryonic esophagus. Narrow band imaging increases the detection rate of CIP. Herein, we present a 55-year-old man with symptomatic circumferential inlet patch. He exhibited globus and dysphagia, and esophagogastroduodenoscopy found cir-cumferential CIP, where im-munohistochemistry revealed the existence of pro-ton pumps(H^+, K^+ -ATPase). His throat symptoms were relieved by acid suppressive therapy with pump inhibitors. This case indicated that CIP should be considered as a differential diagnosis for the cause of globus symptoms in rare cases.
文摘A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.
基金The National Natural Science Foundation of China under contract Nos 41006053 and 40576023the Ministry of Water Resources' Special Funds for Scientific Research on Public Causes under contract No.201001072the Program for Innovative Research Team of Zhejiang Province under contract No.2009F20024
文摘The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.
基金Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions ofChina(No.12KJD570001)
文摘The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.
基金This work is financially supported by the National Nature Science Fundation of China
文摘The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 of these tidal inlets, the best regression equation is A(km2) = 0.845 />(km3)1.20. The analysis shows that C and n are little different from those in the P-A relationship for the inlets of the South China Sea and East China Sea coasts. It is noted that the relationship between P and A is unstable because of the difference in sediment abundance. The study shows that a united P-A relationship can be obtained for the tidal inlets of lagoon type and bay-drowned-valley type, not containing some half-circle shape bays which confront deep water. These half-circle bays do not belong to tidal inlets because they do not have enough sediment abundance and are fairly open.
基金supported by Fundamental Research Funds for the Central UniversitiesChina(Grant No.xjj20100073)Science and Technology Innovation Project of Shaanxi Province of China(Grant No.2011KTCL01-04)
文摘The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.
文摘The proximal esophagus is rarely examined,and its inspection is often inadequate.Optical chromoendoscopy techniques such as narrow band imaging improve the detection rate of inlet patches in the proximal esophagus,a region in which their prevalence is likely underestimated.Various studies have reported correlations between these esophageal marks with different issues such as Barrett’s esophagus,but these findings remain controversial.Conflicting reports complicate the process of interpreting the clinical features of esophageal inlet patches and underestimate their importance.Unfortunately,the limited clinical data and statistical analyses make reaching any conclusions difficult.It is hypothesized that inlet patches are correlated with various esophageal and extraesophageal symptoms,diagnoses and the personalized therapeutic management of patients with inlet patches as well as the differential diagnosis for premalignant lesions or early cancers.Due to its potential underdiagnosis,there are no consensus guidelines for the management and follow up of inlet patches.This review focuses on questions that were raised from published literature on esophageal inlet patches in adults.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51121004)the National Natural Science Foundation of China(No.50976026)
文摘As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designed and simulated numerically to investigate the characteristics of the coupled flow field. The results show that the wheel efficiency of single passage computation without the volute is 80.1%. After accounting for the factors of the loss caused by the volute and the interaction between each passage, the performance is more accurate according to the whole flow passage computation with the volute. High load region gathers at the mid-span and the efficiency declines to 76.6%. The performance of the volute whose structure angle of the trapezoid section is equal to 70 degree is better. Unlike uniform inlet condition in single passage, more appropriate inlet flow for the impeller is provided by the rectification effect of the volute in full passage calculation. Flow parameters are distributed more evenly along the blade span and are generally consistent between each passage at the outlet of the turbine.
文摘Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hydrocyclone and separation efficiency & pressure loss, the highest efficiency is obtained from the inlet of an involute curve with increasing depth-width ratio from the three types, in which the separation efficiency and pressure loss all drops slowly, for the length of the channel decreases, while it drops rapidly in the other two. The flow guiding ability of the inlet affects the separation efficiency greatly, so the corresponding involute type of inlet of hydrocyclone fits for downhole oil-water separation is optimized, which serves as a basis for the structural design of downhole hydrocyclone.
基金The National Key R&D Project of China under contract No.2017YFC1404201the USA North Pacific Research Board Project under contract No.1229the USA Bureau of Ocean Energy Management Awards under contract Nos M12PG00024(ACES)and M12PG00018(Arctic EIS)
文摘Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.