TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electro...The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem...Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.展开更多
The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold r...The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold rolling with the reduction of 23%, due to the high intensity of dislocation and basal texture established during cold rolling. Compared with the Mg-3Gd-lZn hot-rolled sheet, the cold-rolled sheet annealed at 350 for 30 min may get an enhancement in strength without a great loss of ductility. The sheet processed by multi-pass cold rolling does not show a higher strength as expected, due to the softening effect of shear bands. However, the thin slab with the thickness less than 1 mm can be produced by the multi-pass cold rolling with the annealing treatment as few as possible.展开更多
Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The tex...Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The textures and microstructures in the different stress state regions were investigated by means of XRD and TEM analysis.Similar development of texture and microstructure is achieved with less thickness strain under multiaxial stresses in drawing-bulging than in cold rolling.The results show that texture and microstructure are much sensitive to multiaxial stresses.Twinning is more easily activated under compressive stress than tensile stress.Prism a slip is heavily affected by tensile stress,resulting in a remarkable change of the intensity of(0°,35°,0°) texture,while pyramidal c+a slip,forming(20°,35°,30°) texture,weakens with the increase of thickness strain in spite of stress state.展开更多
An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlli...An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.展开更多
The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analy...The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.展开更多
Mechanical and shape memory properties of a Ti50Ni47Fe3 alloy annealed at 450-750 °C for 1 h after a cold-rolled reduction of 25% were investigated by phase transformation analysis and microstructure characteriza...Mechanical and shape memory properties of a Ti50Ni47Fe3 alloy annealed at 450-750 °C for 1 h after a cold-rolled reduction of 25% were investigated by phase transformation analysis and microstructure characterization using tensile tests, Vickers hardness tests, electrical resistivity-temperature tests, SEM and TEM. From the results of the tensile, it can be inferred that the fracture stress and yield stress decreased and the fracture elongation increased as the annealing temperature increased for the rolled Ti50Ni47Fe3 alloy. They reached stead values when the temperature was above 650 °C. The change in Vickers hardness corresponded to the change in the fracture stress and yield stress. The electrical resistivity-temperature curves suggest that a two- stage martensitic transformation(B2-R-B19′) occurred during cooling and heating. The transformation temperatures decreased to lower temperatures when the annealing temperature was increased and maintained the same after the annealing temperature reached 650 °C. TEM revealed the distinct processes occurring at elevated temperatures: recovery, polygonization, and recrystallization.展开更多
Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1...Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.展开更多
The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deform...The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deformation during rolling is accommodated by twinning and slip. Additionally, twinning is the dominant deformation mechanism when the cold rolling reduction is less than 40%. During rolling, {11ˉ22}11ˉ2ˉ3contraction twinning(CT) and {10ˉ12}10ˉ11 extension twinning(ET) are activated. And, the intensity of the(0002) pole along the ND gradually increases with increasing deformation. During annealing, the fraction of low angle grain boundaries(LAGBs) and the intensity of the(0002) pole along the ND gradually decrease slightly with increasing annealing time, while twinning lamellae disappear rapidly. When the annealing time reaches 60 min, 20% cold-rolled sheet recrystallizes almost completely.展开更多
The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were...The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.展开更多
2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates afte...2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.展开更多
The effect of rolling reduction and annealing process on the microstructure and corrosion behavior of Mg-9Li-1Zn(LZ91) alloy was investigated. The test alloy sheets were cold rolled with the reduction of 50% and 75%, ...The effect of rolling reduction and annealing process on the microstructure and corrosion behavior of Mg-9Li-1Zn(LZ91) alloy was investigated. The test alloy sheets were cold rolled with the reduction of 50% and 75%, respectively, and then were annealed at 200 ℃ for 1 h. The microstructure of test alloys was observed by OM and SEM while the phase composition was determined by XRD. The corrosion property was evaluated by electrochemical measurements and immersion tests. The results show that LZ91 alloy sheet consists of α-Mg, β-Li and precipitated Mg-Li-Zn compounds(MgLi2Zn and MgLiZn phases). Dynamic recrystallization grains appear in β-Li phase during annealing process, leading to grain refinement. The results indicate that the increasing rolling reduction and performing the annealing process can enhance the corrosion resistance of LZ91 alloy. The 75% cold-rolled and annealed LZ91 alloy shows the best corrosion resistance.展开更多
Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase c...Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.展开更多
To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a redu...To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.展开更多
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro...An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.展开更多
Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling al...Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling along the transverse direction(TD)and pre-cold rolling along the normal direction(ND)can increase the yield strength.However,pre-cold rolling along the TD is more effective than pre-cold rolling along the ND in improving the comprehensive mechanical properties.After pre-cold rolling to 3%reduction,the sample rolled along the TD and the sample rolled along the ND have similar tensile yield strength(~270 MPa).However,the former has a higher compressive yield strength,lower yield asymmetry and larger toughness than the latter.Moreover,pre-cold rolling can also enhance precipitation hardening effect.However,aging treatment cannot further improve the yield strength of pre-cold rolled samples.Finally,the related mechanism is discussed.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
基金Project(2011DFR50950)supported by the International Science and Technology Cooperation Program of ChinaProject(2012BAF09B04)supported by the National Key Technology Research and Development Program of ChinaProject(CSTC2013JCYJC60001)supported by Chongqing Science and Technology Commission,China
文摘The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
基金Project (50874056) supported by the National Natural Science Foundation of China
文摘Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.
基金Project (2013CB632202) supported by the National Basic Research Program of ChinaProject (51105350) supported by the National Natural Science Foundation of China
文摘The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold rolling with the reduction of 23%, due to the high intensity of dislocation and basal texture established during cold rolling. Compared with the Mg-3Gd-lZn hot-rolled sheet, the cold-rolled sheet annealed at 350 for 30 min may get an enhancement in strength without a great loss of ductility. The sheet processed by multi-pass cold rolling does not show a higher strength as expected, due to the softening effect of shear bands. However, the thin slab with the thickness less than 1 mm can be produced by the multi-pass cold rolling with the annealing treatment as few as possible.
基金Project(2010CB731701) supported by the National Basic Research Program of ChinaProjects(50805121,51175428) supported by the National Natural Science Foundation of China+3 种基金Project(50935007) supported by the National Natural Science Foundation of China for Key ProgramProject(NPU-FFR-JC20100229) supported by the Foundation for Fundamental Research of Northwestern Polytechnical University in ChinaProject(2011-P06) supported by the Foundation of the State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and TechnologyProject(B08040) supported by Program of Introducing Talents of Discipline to Universities("111"),China
文摘Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The textures and microstructures in the different stress state regions were investigated by means of XRD and TEM analysis.Similar development of texture and microstructure is achieved with less thickness strain under multiaxial stresses in drawing-bulging than in cold rolling.The results show that texture and microstructure are much sensitive to multiaxial stresses.Twinning is more easily activated under compressive stress than tensile stress.Prism a slip is heavily affected by tensile stress,resulting in a remarkable change of the intensity of(0°,35°,0°) texture,while pyramidal c+a slip,forming(20°,35°,30°) texture,weakens with the increase of thickness strain in spite of stress state.
基金Project (51175428) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.
基金Project(zzyjkt2013-07B) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.
基金Project(51201014)supported by the National Natural Science Foundation of China
文摘Mechanical and shape memory properties of a Ti50Ni47Fe3 alloy annealed at 450-750 °C for 1 h after a cold-rolled reduction of 25% were investigated by phase transformation analysis and microstructure characterization using tensile tests, Vickers hardness tests, electrical resistivity-temperature tests, SEM and TEM. From the results of the tensile, it can be inferred that the fracture stress and yield stress decreased and the fracture elongation increased as the annealing temperature increased for the rolled Ti50Ni47Fe3 alloy. They reached stead values when the temperature was above 650 °C. The change in Vickers hardness corresponded to the change in the fracture stress and yield stress. The electrical resistivity-temperature curves suggest that a two- stage martensitic transformation(B2-R-B19′) occurred during cooling and heating. The transformation temperatures decreased to lower temperatures when the annealing temperature was increased and maintained the same after the annealing temperature reached 650 °C. TEM revealed the distinct processes occurring at elevated temperatures: recovery, polygonization, and recrystallization.
文摘Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.
基金Projects(51505046,51421001)supported by the National Natural Science Foundation of China
文摘The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deformation during rolling is accommodated by twinning and slip. Additionally, twinning is the dominant deformation mechanism when the cold rolling reduction is less than 40%. During rolling, {11ˉ22}11ˉ2ˉ3contraction twinning(CT) and {10ˉ12}10ˉ11 extension twinning(ET) are activated. And, the intensity of the(0002) pole along the ND gradually increases with increasing deformation. During annealing, the fraction of low angle grain boundaries(LAGBs) and the intensity of the(0002) pole along the ND gradually decrease slightly with increasing annealing time, while twinning lamellae disappear rapidly. When the annealing time reaches 60 min, 20% cold-rolled sheet recrystallizes almost completely.
基金Project(11572306)supported by the National Natural Science Foundation of China
文摘The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.
基金Project(2013AA032401)supported by the National High Technology Research and Development Program of China。
文摘2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.
基金Projects(2016YFB07004032016YFB0301100)supported by the National Key Research and Development Program of China+3 种基金Project(cstc2019jcyj-msxmX0306)supported by the Chongqing Research Program of Basic Research and Frontier Technology,ChinaProjects(2018CDGFCL00052018CDJDCL0019)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B16007)supported by the 111 Program of Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘The effect of rolling reduction and annealing process on the microstructure and corrosion behavior of Mg-9Li-1Zn(LZ91) alloy was investigated. The test alloy sheets were cold rolled with the reduction of 50% and 75%, respectively, and then were annealed at 200 ℃ for 1 h. The microstructure of test alloys was observed by OM and SEM while the phase composition was determined by XRD. The corrosion property was evaluated by electrochemical measurements and immersion tests. The results show that LZ91 alloy sheet consists of α-Mg, β-Li and precipitated Mg-Li-Zn compounds(MgLi2Zn and MgLiZn phases). Dynamic recrystallization grains appear in β-Li phase during annealing process, leading to grain refinement. The results indicate that the increasing rolling reduction and performing the annealing process can enhance the corrosion resistance of LZ91 alloy. The 75% cold-rolled and annealed LZ91 alloy shows the best corrosion resistance.
基金Project(E2019203005)supported by the Natural Science Foundation of Hebei Province,China。
文摘Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.
基金Projects (106112015CDJXZ138803,106112015CDJXY130003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (51421001) supported by National Natural Science Foundation of China
文摘To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.
基金Project(2019YFB2006500)supported by the National Key Research and Development Program of ChinaProject(51674303)supported by the National Natural Science Foundation of China+2 种基金Project(2018RS3015)supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,ChinaProject(2019CX006)supported by the Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China。
文摘An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.
基金financially supported by the National Natural Science Foundation of China (No. 51601154)the Fundamental Research Funds for the Central Universities, China (No. XDJK2019B003)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 17KJD430006)Chongqing Municipal Education Commission, China (No. KJZDK202001502)
文摘Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling along the transverse direction(TD)and pre-cold rolling along the normal direction(ND)can increase the yield strength.However,pre-cold rolling along the TD is more effective than pre-cold rolling along the ND in improving the comprehensive mechanical properties.After pre-cold rolling to 3%reduction,the sample rolled along the TD and the sample rolled along the ND have similar tensile yield strength(~270 MPa).However,the former has a higher compressive yield strength,lower yield asymmetry and larger toughness than the latter.Moreover,pre-cold rolling can also enhance precipitation hardening effect.However,aging treatment cannot further improve the yield strength of pre-cold rolled samples.Finally,the related mechanism is discussed.