期刊文献+
共找到613,383篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
1
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Combined Insights from Leachate Structure and Microstructure Characteristics for Eating Quality of Convenience Rice Processed by Super-Heated and Pressurized Steam Technologies
2
作者 Mingyo HA Hyo-Young JEONG +1 位作者 Ju Hun LEE Hyun-Jung CHUNG 《Rice science》 SCIE CSCD 2024年第4期475-488,I0035,I0036,共16页
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n... Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies. 展开更多
关键词 reheated convenience rice starch structure LEACHATE multi-scale structure eating quality processing technology
下载PDF
Concurrent Two-Scale Topology Optimization of Thermoelastic Structures Using a M-VCUT Level Set Based Model of Microstructures
3
作者 Jin Zhou Minjie Shao +1 位作者 Ye Tian Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1327-1345,共19页
By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M... By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective. 展开更多
关键词 Two-scale structure topology optimization multiple variable cutting level set DATA-DRIVEN radial basis function thermoelastic structure
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
4
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Fe-lnduced Electronic Transfer and Structural Evolution of Lotus Pod-Like CoNiFeP_(x)@P,N-C Heterostructure for Sustainable Oxygen Evolution
5
作者 Xiaojun Zeng Qingqing Zhang +2 位作者 Chulong Jin Hui Huang Yanfeng Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期182-189,共8页
Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is ... Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging.Herein,we present a facile ion exchange and phosphating processes to transform intestine-like CoNiP_(x)@P,N-C into lotus pod-like CoNiFeP_(x)@P,N-C heterostructure in which numerous P,N-codoped carboncoated CoNiFeP_(x)nanoparticles tightly anchors on the 2D carbon matrix.Meanwhile,the as-prepared CoNiFeP_(x)@P,N-C enables a core-shell structure,high specific surface area,and hierarchical pore structure,which present abundant heterointerfaces and fully exposed active sites.Notably,the incorporation of Fe can also induce electron transfer in CoNiP_(x)@P,IM-C,thereby promoting the oxygen evolution reaction.Consequently,CoNiFeP_(x)@P,IM-C delivers a low overpotential of 278 mV(vs RHE)at a current density of10 mA cm^(-1)and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test.This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces. 展开更多
关键词 electronic transfer Fe exchange multi-metal phosphides OER electrocatalysts structural evolution
下载PDF
Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%-6 wt%) Ag Alloy
6
作者 茹亚东 ZHANG Zhongyuan +7 位作者 高召顺 ZHANG Ling ZUO Tingting XUE Jiangli TANG Zhixiang DA Bo LIU Yongsheng XIAO Liye 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期747-753,共7页
In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The re... In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The results show that non-equilibrium eutectic colonies exist in the Cu-(3 wt%-6 wt%)Ag alloy and no eutectic colonies in the 1 wt%-2 wt%Ag containing alloys.These eutectic colonies are aligned along the drawing direction and refined with the increase of draw ratio.Attributed to the refinement of eutectic colonies,the Cu-Ag alloy exhibits higher strength with the increase of draw ratio.The Cu-6Ag alloy exhibits excellent comprehensive properties with a strength of 930 MPa and a conductivity of 82%IACS when the draw ratio reaches 5.7. 展开更多
关键词 Cu-Ag alloy high strength and high conductivity microstructure eutectic structure strengthening mechanism
下载PDF
Revealing interfacial charge redistribution of homologous Ru-RuS_(2) heterostructure toward robust hydrogen oxidation reaction
7
作者 Yi Liu Lianrui Cheng +5 位作者 Shuqing Zhou Yuting Yang Chenggong Niu Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期332-339,共8页
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)... Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance. 展开更多
关键词 HETEROSTRUCTURE Hollow spherical structure Hydrogen oxidation reaction Charge redistribution Density functional calculation
下载PDF
Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis:Important roles of microstructures and electronic modulation
8
作者 Hongyu Gong Guanliang Sun +6 位作者 Wenhua Shi Dongwei Li Xiangjun Zheng Huan Shi Xiu Liang Ruizhi Yang Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au... Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts. 展开更多
关键词 Au nanoparticles cobalt sulfide electronic modulation hierarchical porous structure oxygen evolution reaction
下载PDF
Influence of Ultra Fine Glass Powder on the Properties and Microstructure of Mortars
9
作者 Wei Chen Dingdan Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第5期915-938,共24页
This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali acti... This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%. 展开更多
关键词 MORTAR waste glass powder alkali activation compressive strength gas permeability pore structure
下载PDF
Highly Sensitive Photodetectors Based on WS_(2) Quantum Dots/GaAs Heterostructures
10
作者 LI Xianshuai LIN Fengyuan +4 位作者 HOU Xiaobing LI Kexue LIAO Lei HAO Qun WEI Zhipeng 《发光学报》 EI CAS CSCD 北大核心 2024年第10期1699-1706,共8页
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ... The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs. 展开更多
关键词 GaAs nanowires WS_(2) quantum dots PHOTODETECTORS type-Ⅱenergy band structure
下载PDF
Solar-driven CO_(2) conversion to methane and methanol using different nanostructured Cu_(2)O-based catalysts modified with Au nanoparticles
11
作者 João Angelo Lima Perini Lilian D.Moura Torquato +7 位作者 Juliana Fde Brito Gustavo A.Andolpho Mateus A.Gonçalves Leonardo D.De Angelis Lucas D.Germano Susana I.Córdoba de Torresi Teodorico C.Ramalho Maria V.Boldrin Zanoni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期287-298,共12页
This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of ... This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of polydopamine was used as both an adherent agent and an electron transfer mediator,due to itsπ-conjugated electron system.The highest production yield was achieved using a TNT@PDA/Nc/Au40%electrode,with Faradaic efficiencies of 47.4%(110.5μM cm^(-2))and 27.8%(50.4μM cm^(-2))for methanol and methane,respectively.The performance of the photoelectrodes was shown to be Cu_(2)O facet-dependent,with cubic structures leading to greater conversion of CO_(2)to methanol(43%)and methane(27%),compared to the octahedral morphology,while a higher percentage of metallic gold on the nanostructured Cu_(2)O surface was mainly important for CH4production.Density functional theory(DFT)calculations supported these findings,attributing the superior photoelectrocatalytic performance of the TNT@PDA/Nc/Au40%electrode for CH4generation to the formation of an OCH3intermediate bonded to Au atoms.Studies using isotope-labeling and analysis by gas chromatograph-mass(GC-MS)demonstrated that13CO_(2)was the source for photoelectrocatalytic generation of13CH3OH and13CH313CH2OH. 展开更多
关键词 Cu_(2)O nanocubes PHOTOELECTROCATALYSIS POLYDOPAMINE CO_(2) photoelectroreduction DFT calculations
下载PDF
Effect of Nanostructures Addition and Enhancement of Poly (Vinylidene Difluoride) (PVDF) Energy Harvesting
12
作者 Omar Peña-Oliveras Brenda Javier-Boodhan +1 位作者 Anthony La Santa Juan Gonzalez-Sanchez 《Materials Sciences and Applications》 2024年第7期228-244,共17页
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ... With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM). 展开更多
关键词 Poly (Vinylidene Fluoride) (PVDF) Energy Harvesting ELECTROSPINNING Nanoparticles ZnO MgO FE3O4
下载PDF
Dietary bamboo leaf flavonoids improve quality and microstructure of broiler meat by changing untargeted metabolome 被引量:5
13
作者 Guangtian Cao Huixian Wang +6 位作者 Yang Yu Fei Tao Huijuan Yang Shenglan Yang Ye Qian Hui Li Caimei Yang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1514-1527,共14页
Background Dietary bamboo leaf flavonoids(BLFs)are rarely used in poultry production,and it is unknown whether they influence meat texture profile,perceived color,or microstructure.Results A total of 720 one-day-old A... Background Dietary bamboo leaf flavonoids(BLFs)are rarely used in poultry production,and it is unknown whether they influence meat texture profile,perceived color,or microstructure.Results A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg,50 mg BLFs/kg,or 250 mg BLFs/kg or without additions.Data showed that the dietary BLFs significantly(P<0.05)changed growth performance and the texture profile.In particular,BLFs increased birds’average daily gain and average daily feed intake,decreased the feed:gain ratio and mortality rate,improved elasticity of breast meat,enhanced the gumminess of breast and leg meat,and decreased the hardness of breast meat.Moreover,a significant(P<0.05)increase in redness(a*)and chroma(c*)of breast meat and c*and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers.In addition,BLFs supplementation significantly decreased(P<0.05)theβ-sheet ratio and serum malondialdehyde and increased theβ-turn ratio of protein secondary structure,superoxide dismutase,and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum.Based on the analysis of untargeted metabolome,BLFs treatment considerably altered 14 metabolites of the breast meat,including flavonoids,amino acids,and organic acids,as well as phenolic and aromatic compounds.Conclusions Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites. 展开更多
关键词 Bamboo leaf flavonoid BROILER Meat quality METABOLOME Protein secondary structure
下载PDF
Effects of ZnO,FeO and Fe_(2)O_(3)on the spinel formation,microstructure and physicochemical properties of augite-based glass ceramics 被引量:2
14
作者 Shuai Zhang Yanling Zhang Shaowen Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1207-1216,共10页
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu... Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics. 展开更多
关键词 SPINEL network structure thermodynamics MICROSTRUCTURE glass ceramics
下载PDF
Design of ZnSe-CoSe heterostructure decorated in hollow N-doped carbon nanocage with generous adsorption and catalysis sites for the reversibly fast kinetics of polysulfide conversion 被引量:2
15
作者 Junan Feng Chuan Shi +7 位作者 Hanghang Dong Chaoyue Zhang Wendong Liu Yu Liu Tianyi Wang Xiaoxian Zhao Shuangqiang Chen Jianjun Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期135-145,I0004,共12页
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p... Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes. 展开更多
关键词 Lithium-sulfur batteries HETEROSTRUCTURE Conversion Kinetics Hollow structure Bi-directional catalysis
下载PDF
Geostructures, dynamics and risk mitigation of high-altitude and long- runout rockslides 被引量:7
16
作者 Yueping Yin Bin Li +3 位作者 Yang Gao Wenpei Wang Shilin Zhang Nan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期66-101,共36页
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock... Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas. 展开更多
关键词 ROCKSLIDE High-altitude and long-runout Sliding-prone geostructure Large-scale experimental apparatus Risk mitigation strategy Structural prevention technique
下载PDF
Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review 被引量:3
17
作者 Qiang Fu Mengxin Bu +3 位作者 Zhaorui Zhang Wenrui Xu Qiang Yuan Ditao Niu 《Engineering》 SCIE EI CAS CSCD 2023年第1期162-179,共18页
Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse... Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse of slag and other wastes and saves resources. Furthermore, the scope of use of slag has been expanded. The progress of the research on the hydration characteristics, microstructure, interfacial transition zone, and pore structure of AASC based on the relevant literatures was analyzed and summarized in this study. The influences of the slag composition, the type and dosage of the alkali activator, and the curing conditions on the hydration characteristics and the microstructure of the AASC were discussed. Relatively few research results on the microstructure of AASC are available, and the relevant conclusions are not completely consistent. Moreover, there are many constraints on the development of AASC (e.g., complex composition of raw materials of slag, large shrinkage deformation, and low fluidity). Therefore, further research is required. 展开更多
关键词 Alkali-activated slag concrete Hydration characteristics Pore structure Inter facial transiti on zone Micr ostructure
下载PDF
Heterostructured Mn_(3)O_(4)-MnS Multi-Shelled Hollow Spheres for Enhanced Polysulfide Regulation in Lithium-Sulfur Batteries 被引量:3
18
作者 Bin Qin Qun Wang +8 位作者 Weiqi Yao Yifei Cai Yuhan Chen Pengcheng Wang Yongchun Zou Xiaohang Zheng Jian Cao Junlei Qi Wei Cai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期436-444,共9页
Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and... Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications. 展开更多
关键词 ELECTROCATALYST heterojunction host hollow multi-shelled structure Li-S battery Mn_(3)O_(4)-MnS
下载PDF
Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction 被引量:1
19
作者 Kai Yu Hongyuan Yang +6 位作者 Hao Zhang Hui Huang Zhaowu Wang Zhenhui Kang Yang Liu Prashanth W.Menezes Ziliang Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期547-564,共18页
Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic la... Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La_(2)O_(2)S prototype is fabricated as a binder-free precatalyst for alkaline OER.The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La,Ni,O,and S species during OER,which assures the adsorption and stabilization of the oxyanion SO_(4)^(2-)onto the surface of the deeply reconstructed porous heterostructure composed of confining Ni OOH nanodomains by La(OH)_3 barrier.Such coupling,confinement,porosity and immobilization enable notable improvement in active site accessibility,phase stability,mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates.The optimized electrocatalyst delivers exceptional alkaline OER activity and durability,outperforming most of the Ni-based benchmark OER electrocatalysts. 展开更多
关键词 Lanthanum-nickel oxysulfide Rare earth metal Immobilization of oxyanions Structural reconstruction Oxygen evolution catalysis
下载PDF
Synergy mechanism of defect engineering in MoS_(2)/FeS_(2)/C heterostructure for high-performance sodium-ion battery 被引量:1
20
作者 Linlin Ma Xiaomei Zhou +9 位作者 Jun Sun Pan Zhang Baoxiu Hou Shuaihua Zhang Ningzhao Shang Jianjun Song Hongjun Ye Hui Shao Yongfu Tang Xiaoxian Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期268-276,I0006,共10页
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here... MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability. 展开更多
关键词 Defect engineering HETEROSTRUCTURE Hollow structure Sodium-ion battery MoS_(2)/FeS_(2)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部