Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicato...Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium.展开更多
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe...To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.展开更多
Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-...Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.展开更多
The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by i...The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.展开更多
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n...In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.展开更多
A new method for prediction of wing aerodynamic performance in rain condition was presented.Three-and four-layer artificial neural networks based on improved algorithm for error Back Propagation(BP)network were respec...A new method for prediction of wing aerodynamic performance in rain condition was presented.Three-and four-layer artificial neural networks based on improved algorithm for error Back Propagation(BP)network were respectively built.Detailed approaches to determine the optical parameters for network model were introduced and the specific steps for applying BP network model to predict wing aerodynamic performance in rain were given.On this basis,the established optimal three-and four-layer BP network model was used for this prediction.Results indicate that both of the network models are appropriate for predicting wing aerodynamic performance in rain.The sum of square error level produced by two models is less than 0.2%,and the prediction accuracy by four-layer network model is higher than that of three-layer network.展开更多
基金Supported by the Ocean Public Welfare Scientific Research Project,State Oceanic Administration of China(No.200705029)the National Special Fund for Basic Science and Technology of China(No.2012FY112500)the National Non-profit Institute Basic Research Fund(No.FIO2011T06)
文摘Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium.
基金Projects(50634030) supported by the National Natural Science Foundation of China
文摘To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.
基金Supported by the National Natural Science Foundation of China(No.60973118,60873075)
文摘Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.
文摘The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.
文摘In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.
文摘A new method for prediction of wing aerodynamic performance in rain condition was presented.Three-and four-layer artificial neural networks based on improved algorithm for error Back Propagation(BP)network were respectively built.Detailed approaches to determine the optical parameters for network model were introduced and the specific steps for applying BP network model to predict wing aerodynamic performance in rain were given.On this basis,the established optimal three-and four-layer BP network model was used for this prediction.Results indicate that both of the network models are appropriate for predicting wing aerodynamic performance in rain.The sum of square error level produced by two models is less than 0.2%,and the prediction accuracy by four-layer network model is higher than that of three-layer network.