A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is perfo...A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.展开更多
In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation fiel...In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.展开更多
Oesophageal cancer affects more than 450000 people worldwide and despite continued medical advancements the incidence of oesophageal cancer is increasing. Oesophageal cancer has a 5 year survival of 15%-25% and now gl...Oesophageal cancer affects more than 450000 people worldwide and despite continued medical advancements the incidence of oesophageal cancer is increasing. Oesophageal cancer has a 5 year survival of 15%-25% and now globally attempts are made to more aggressively diagnose and treat Barrett's oesophagus the known precursor to invasive disease. Currently diagnosis the of Barrett's oesophagus is predominantly made after endoscopic visualisation and histopathological confirmation. Minimally invasive techniques are being developed to improve the viability of screening programs. The management of Barrett's oesophagus can vary greatly dependent on the presence and severity of dysplasia. There is no consensus between the major international medical societies to determine and agreed surveillance and intervention pathway. In this review we analysed the current literature to demonstrate the evolving management of metaplasia and dysplasia in Barrett's epithelium.展开更多
The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurem...The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.展开更多
In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the o...In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.展开更多
The relationship between Sacks body strain deformation at Beida No. 200 station in Changping and tidal solids,atmospheric pressure and water level is analyzed in this paper. Sacks body strain deformation data before t...The relationship between Sacks body strain deformation at Beida No. 200 station in Changping and tidal solids,atmospheric pressure and water level is analyzed in this paper. Sacks body strain deformation data before the M_S8. 0 Wenchuan earthquake is studied based on the analysis of the interference. The short-impending anomaly of the body strain deformation is considered to be reliable. The anomaly characteristics conclude:( 1) The trend anomaly as extensional change of the body strain deformations on a quasi 1 year time scale before the Wenchuan earthquake was recorded, and the accumulative amount was about 4000 × 10^(-9). Correspondingly,the short-term precursor of earthquake was manifested as an extensional abrupt change.( 2) The extensional intermittent anomalous abrupt change was recorded by body strainmeters between March1 and May 7 in 2008.( 3) Four compressional abrupt changes were recorded in the intermittent distortions recorded between April 13 and May 11.( 4) High frequency components were increased in the distortion process in May 1 to 3,5,7,and 9 to 12,caused by slow earthquakes before the Wenchuan earthquake according to wavelet analysis. The abnormal phenomena are summarized and the mechanics discussed in this paper. Strain solid tide distortions in body strain observations,the continuous repeated extensional and compressional abrupt changes accompanying these distortions,and the increase of high frequency components can be regarded as the index of short term and impending earthquake prediction,based on analysis of interference factors such as air pressure and water level.展开更多
The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 19...The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.展开更多
基金the financial support from the National Natural Science Foundation of China (Nos. U2141215, 52105384 and 52075325)the support of Materials Genome Initiative Center, Shanghai Jiao Tong University, China。
文摘A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.
基金supported by the Science and Technology Project of Shanxi Province(20140313023-1)the special earthquake research project of China Earthquake Administration(201208009)+1 种基金Natural Science Foundation of ShanxiChina(2011021024-1)
文摘In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.
文摘Oesophageal cancer affects more than 450000 people worldwide and despite continued medical advancements the incidence of oesophageal cancer is increasing. Oesophageal cancer has a 5 year survival of 15%-25% and now globally attempts are made to more aggressively diagnose and treat Barrett's oesophagus the known precursor to invasive disease. Currently diagnosis the of Barrett's oesophagus is predominantly made after endoscopic visualisation and histopathological confirmation. Minimally invasive techniques are being developed to improve the viability of screening programs. The management of Barrett's oesophagus can vary greatly dependent on the presence and severity of dysplasia. There is no consensus between the major international medical societies to determine and agreed surveillance and intervention pathway. In this review we analysed the current literature to demonstrate the evolving management of metaplasia and dysplasia in Barrett's epithelium.
基金sponsored by the Earthquake Science Foundation of Xinjiang,China(201302)
文摘The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.
基金funded by the Earthquake Science and Technology Development Fund of GEA(Grant No.2016M02,2016Y02)the Earthquake Tracking Task of CEA(2017010221)+1 种基金the Fund of Science for Earthquake Resilience,CEA,(XH16038Y,XH14049)Grant of National Natural Science Foundation of China(51408567,41304048)
文摘In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.
基金funded by the Three-in-One Project of Earthquake Monitoring,Forecasting and Scientific Research of China Earthquake Administration:Statistical Research on Earthquake Cases of Short-impending Anomalies of Sacks Body Strain(154201)Operation and Maintenance of the Shisanling(Ming Tombs)Seismic Station(40417600105)
文摘The relationship between Sacks body strain deformation at Beida No. 200 station in Changping and tidal solids,atmospheric pressure and water level is analyzed in this paper. Sacks body strain deformation data before the M_S8. 0 Wenchuan earthquake is studied based on the analysis of the interference. The short-impending anomaly of the body strain deformation is considered to be reliable. The anomaly characteristics conclude:( 1) The trend anomaly as extensional change of the body strain deformations on a quasi 1 year time scale before the Wenchuan earthquake was recorded, and the accumulative amount was about 4000 × 10^(-9). Correspondingly,the short-term precursor of earthquake was manifested as an extensional abrupt change.( 2) The extensional intermittent anomalous abrupt change was recorded by body strainmeters between March1 and May 7 in 2008.( 3) Four compressional abrupt changes were recorded in the intermittent distortions recorded between April 13 and May 11.( 4) High frequency components were increased in the distortion process in May 1 to 3,5,7,and 9 to 12,caused by slow earthquakes before the Wenchuan earthquake according to wavelet analysis. The abnormal phenomena are summarized and the mechanics discussed in this paper. Strain solid tide distortions in body strain observations,the continuous repeated extensional and compressional abrupt changes accompanying these distortions,and the increase of high frequency components can be regarded as the index of short term and impending earthquake prediction,based on analysis of interference factors such as air pressure and water level.
文摘The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.