Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (...Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Methods: The sample consisted of 69 subjects: 35 patients (n = 17 males, n = 18 females; 52-71 years old) and 34 normal controls (n = 17 males, n = 17 females; 51 -63 years old). Mini-mental state examination (MMSE) of two groups revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). In EEG recording, subjects were performed at rest and during working memory task. EEG signals from F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 electrode pairs are resulted from the inter-hemispheric action, and EEG signals from F3-C3, F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs are resulted from the intra-hemispheric action for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. The influence of inter- and intra-hemispheric coherence on EEG activity with eyes closed was examined using fast Fourier transformation from the 16 sampled channels. Results: During working memory tasks, the inter- and intra-hemispheric EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in inter- and intra-hemispheric EEG coherences between two groups at rest. Conclusion: Experimental results comprise evidence that MCI patients have higher degree of functional connectivity between hemispheres and in hemispheres during working condition, It suggests that MCI may be associated with compensatory processes during working memory tasks between hemispheres and in hemispheres. Moreover, failure of normal cortical connections may exist in MCI patients.展开更多
基金Project (No. 2003B070) supported by the Science and TechnologyProgram of Zhejiang Province, China
文摘Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Methods: The sample consisted of 69 subjects: 35 patients (n = 17 males, n = 18 females; 52-71 years old) and 34 normal controls (n = 17 males, n = 17 females; 51 -63 years old). Mini-mental state examination (MMSE) of two groups revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). In EEG recording, subjects were performed at rest and during working memory task. EEG signals from F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 electrode pairs are resulted from the inter-hemispheric action, and EEG signals from F3-C3, F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs are resulted from the intra-hemispheric action for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. The influence of inter- and intra-hemispheric coherence on EEG activity with eyes closed was examined using fast Fourier transformation from the 16 sampled channels. Results: During working memory tasks, the inter- and intra-hemispheric EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in inter- and intra-hemispheric EEG coherences between two groups at rest. Conclusion: Experimental results comprise evidence that MCI patients have higher degree of functional connectivity between hemispheres and in hemispheres during working condition, It suggests that MCI may be associated with compensatory processes during working memory tasks between hemispheres and in hemispheres. Moreover, failure of normal cortical connections may exist in MCI patients.