When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor...When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.展开更多
After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressiv...After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse. However, only very few building design codes provide some rather general guidance, no detailed design requirement is given. Progressive collapse of the Alfred P. Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures. Recently, US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis. These two guidelines are most commonly used, but their accuracy is not known. This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads. The DoD and GSA procedures are also used to analyse the same example structure. Numerical results are compared and discussed. The accuracy and the applicability of the two design guidelines are evaluated.展开更多
For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously u...For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.展开更多
A rock failure process analysis model, RFPA2D code, a two-dimensional numerical code, were proposed. The code not only satisfied the global equilibrium, strain consistent and nonlinear constitutive relationship of roc...A rock failure process analysis model, RFPA2D code, a two-dimensional numerical code, were proposed. The code not only satisfied the global equilibrium, strain consistent and nonlinear constitutive relationship of rock and soil materials but also took into account the heterogeneous characteristics of rock materials at macroscopic and microscopically level. The failure behavior of tunnel could be simulated by this numerical model. The model could realistically simulate the fracture behavior of tunnel by excavation loading, strength limits, and post peak response for both tension and compression. As the proposed method was used to conduct the stability analysis of tunnel, the safety factor of tunnel was defined as the ratio of actual shear strength parameter to critical failure shear strength parameter. Not only the safety factor of tunnel with specific physics meaning can be obtained, but also the overall failure process and the location of failure surface may also be determined at the same time.展开更多
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern...To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.展开更多
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the b...The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.展开更多
In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Thre...In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Three winding angles, 10°, 15°and 20°, are considered. It is shown that among ribbon vessels investigated, the center displacement of outermost ribbons of the vessel with 10°winding angle is the smallest under the same blast loading. The response of vessels loaded in inner core is local. From the center of the cylindrical shell to the bottom cover, the maximum strain gradually decreases. The ribbons are subjected to tension in the length direction and compression in the width direction. Blasting shock energy concentrates on where is close to center section of blasting. For comparison, numerical simulation of a monobloc thick-walled explosion containment vessel is also investigated. It can be found that the biggest deformation of the flat ribbon wound explosion containment vessels is bigger than that of the monobloc thick-walled explosion containment vessel in the center section of blasting under the same TNT. Numerical results are approximately in agreement with experimental ones. It is proved that the ribbon vessels have the valuable properties of ' leak before burst at worst' compared with the monobloc vessels through numerical simulation.展开更多
Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electri...Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).展开更多
Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from...Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from the blast cavity. The effects of the charge density, the interval of the charge strip, the distance of the charges from the structure, and the mass of backfill soil on the overpressures applied on the tested structures were analyzed by the FEM model. The quantitative relationships between the peak value and the duration of the overpressure and the above-mentioned affecting parameters were established. Agreement between numerical results and the test data was obtained.展开更多
Econometric models have not been widely used for thorough analysis of the statistics published by banks. The paper presents the results of analyses of Estonian Banking, made by the authors during the last seven years....Econometric models have not been widely used for thorough analysis of the statistics published by banks. The paper presents the results of analyses of Estonian Banking, made by the authors during the last seven years. Earlier results have been published in a number of collections of research articles and have been reported on international conferences worldwide (in Mexico, South Africa, Egypt, Poland, Check Republic, Chile, China, and USA, etc.). From econometric models, the Cobb-Douglas production function with income-earning assets, equity, liabilities and fixed assets as inputs was selected. The time period chosen is from the first quarter of 1995 to the fourth quarter of 2008 that is a total of 56 periods. The balance sheets and income statements published quarterly by the banks were used as the empirical base of analysis.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219700)
文摘When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.
基金Supported by National Natural Science Foundation of China(No.50528808)Australian Research Council(No. DP0451966)
文摘After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse. However, only very few building design codes provide some rather general guidance, no detailed design requirement is given. Progressive collapse of the Alfred P. Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures. Recently, US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis. These two guidelines are most commonly used, but their accuracy is not known. This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads. The DoD and GSA procedures are also used to analyse the same example structure. Numerical results are compared and discussed. The accuracy and the applicability of the two design guidelines are evaluated.
基金supportedin part by Natural Science Foundation under grant No.91338108,91438206Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.
基金Supported by the National Natural Science Foundation of China(50474017, 50490274)
文摘A rock failure process analysis model, RFPA2D code, a two-dimensional numerical code, were proposed. The code not only satisfied the global equilibrium, strain consistent and nonlinear constitutive relationship of rock and soil materials but also took into account the heterogeneous characteristics of rock materials at macroscopic and microscopically level. The failure behavior of tunnel could be simulated by this numerical model. The model could realistically simulate the fracture behavior of tunnel by excavation loading, strength limits, and post peak response for both tension and compression. As the proposed method was used to conduct the stability analysis of tunnel, the safety factor of tunnel was defined as the ratio of actual shear strength parameter to critical failure shear strength parameter. Not only the safety factor of tunnel with specific physics meaning can be obtained, but also the overall failure process and the location of failure surface may also be determined at the same time.
文摘To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.
文摘The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.
基金Supported by National Natural Science Foundation of China(No. 10372091)
文摘In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Three winding angles, 10°, 15°and 20°, are considered. It is shown that among ribbon vessels investigated, the center displacement of outermost ribbons of the vessel with 10°winding angle is the smallest under the same blast loading. The response of vessels loaded in inner core is local. From the center of the cylindrical shell to the bottom cover, the maximum strain gradually decreases. The ribbons are subjected to tension in the length direction and compression in the width direction. Blasting shock energy concentrates on where is close to center section of blasting. For comparison, numerical simulation of a monobloc thick-walled explosion containment vessel is also investigated. It can be found that the biggest deformation of the flat ribbon wound explosion containment vessels is bigger than that of the monobloc thick-walled explosion containment vessel in the center section of blasting under the same TNT. Numerical results are approximately in agreement with experimental ones. It is proved that the ribbon vessels have the valuable properties of ' leak before burst at worst' compared with the monobloc vessels through numerical simulation.
文摘Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).
文摘Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from the blast cavity. The effects of the charge density, the interval of the charge strip, the distance of the charges from the structure, and the mass of backfill soil on the overpressures applied on the tested structures were analyzed by the FEM model. The quantitative relationships between the peak value and the duration of the overpressure and the above-mentioned affecting parameters were established. Agreement between numerical results and the test data was obtained.
文摘Econometric models have not been widely used for thorough analysis of the statistics published by banks. The paper presents the results of analyses of Estonian Banking, made by the authors during the last seven years. Earlier results have been published in a number of collections of research articles and have been reported on international conferences worldwide (in Mexico, South Africa, Egypt, Poland, Check Republic, Chile, China, and USA, etc.). From econometric models, the Cobb-Douglas production function with income-earning assets, equity, liabilities and fixed assets as inputs was selected. The time period chosen is from the first quarter of 1995 to the fourth quarter of 2008 that is a total of 56 periods. The balance sheets and income statements published quarterly by the banks were used as the empirical base of analysis.