随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并...随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space,OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。展开更多
文摘随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space,OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。