To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base...To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.展开更多
Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union h...Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.展开更多
As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes...As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes are presented showing the coupling effect of power and mixed anodes was investigated at the varying charging rates, showing the tunable behaviors dependent on the hard carbon/graphite ratios. By studying the specific capacity evolution in different split potential ranges, we found that the mixed anodes with a higher proportion of hard carbon were advantageous when working in the cut-off potential greater than 0.10 V. The electrochemical impedance spectroscopy was measured at various anode potentials, which depicted the evolution of cell resistance with the state of charge. With the aid of electrochemical impedance spectroscopy, we found that the capacity evolution with mixed ratio is attributed to the lithiation-level induced difference of charge transfer resistance and Warburg resistance. A coupling effect was discovered showing a great potential in balancing the power-energy performance of mixed anode by simply controlling the ratio of hard-carbon/graphite.展开更多
ZTE Corporation (ZTE), a leading global provider of telecommunications equipment and network solutions, revealed on May 6, 2008 that its award winning Broadband Universal Access System could help operators make a majo...ZTE Corporation (ZTE), a leading global provider of telecommunications equipment and network solutions, revealed on May 6, 2008 that its award winning Broadband Universal Access System could help operators make a major impact on their carbon footprint as well as save millions of dollars a year in power costs. ZTE’s DSLAM ZXDSL FSAP 9806H overreaches the European code of conduct on energy consumption for broadband equipment, offering a significant power consumption savings per port.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c...Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.展开更多
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Dura...This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Duration (F&D) method and Monte Carlo Simulation (MCS) method. MCS method is used to achieve a model to simulate the random status of power system. Also, the proposed method is applied on the IEEE 14-bus test system to investigate the effects of integrating different capacities of wind energy to the reliability of power system with considering carbon tax.展开更多
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an...With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.展开更多
This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and pote...This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and potential for low-cost production. A novel theoretical model is discovered in distributed energy resources for power emissions and cost. The smart carbon neutrality approaches are analyzed in both theory and experiments. The advantages, current challenges, and future prospects of the related solutions are discussed methodically. By addressing stability and scalability issues, these approaches can contribute significantly to reducing carbon emissions and promoting sustainable energy solutions.展开更多
文摘To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.
文摘Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.
文摘As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes are presented showing the coupling effect of power and mixed anodes was investigated at the varying charging rates, showing the tunable behaviors dependent on the hard carbon/graphite ratios. By studying the specific capacity evolution in different split potential ranges, we found that the mixed anodes with a higher proportion of hard carbon were advantageous when working in the cut-off potential greater than 0.10 V. The electrochemical impedance spectroscopy was measured at various anode potentials, which depicted the evolution of cell resistance with the state of charge. With the aid of electrochemical impedance spectroscopy, we found that the capacity evolution with mixed ratio is attributed to the lithiation-level induced difference of charge transfer resistance and Warburg resistance. A coupling effect was discovered showing a great potential in balancing the power-energy performance of mixed anode by simply controlling the ratio of hard-carbon/graphite.
文摘ZTE Corporation (ZTE), a leading global provider of telecommunications equipment and network solutions, revealed on May 6, 2008 that its award winning Broadband Universal Access System could help operators make a major impact on their carbon footprint as well as save millions of dollars a year in power costs. ZTE’s DSLAM ZXDSL FSAP 9806H overreaches the European code of conduct on energy consumption for broadband equipment, offering a significant power consumption savings per port.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
基金supported by the Science and Technology Project of State Grid Inner Mongolia East Power Co.,Ltd.:Research on Carbon Flow Apportionment and Assessment Methods for Distributed Energy under Dual Carbon Targets(52664K220004).
文摘Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
文摘This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Duration (F&D) method and Monte Carlo Simulation (MCS) method. MCS method is used to achieve a model to simulate the random status of power system. Also, the proposed method is applied on the IEEE 14-bus test system to investigate the effects of integrating different capacities of wind energy to the reliability of power system with considering carbon tax.
文摘With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.
文摘This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and potential for low-cost production. A novel theoretical model is discovered in distributed energy resources for power emissions and cost. The smart carbon neutrality approaches are analyzed in both theory and experiments. The advantages, current challenges, and future prospects of the related solutions are discussed methodically. By addressing stability and scalability issues, these approaches can contribute significantly to reducing carbon emissions and promoting sustainable energy solutions.