We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double co...Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double colored CCD(short form of charge coupled device) was constructed in this paper.Two images captured by different CCD compensated each other which reduced the influence of noises.The application of the four-step phase-shifting method enabled the calculation of the exact phase in a point easy and quick.A large amount of 3D points with three coordinates X,Y and Z were obtained precisely making the definition and calculation of fabric smoothness characters easy.Then four parameters which intuitively denoted the fabric smoothness degree were obtained.Finally,a proper neural network was built,which successfully performed the fabric smoothness classification.The experimental results show that the system is applicable for all the fabric whatever pattern or color.The experimental grades provided by this grating projection system are also highly consistent with the subjective results.展开更多
Mobile Application Development is a well-known undergraduate specialized course majoring in Computer Science and Software Engineering.Since it is a rapid developing technique and requires extensive project samples to ...Mobile Application Development is a well-known undergraduate specialized course majoring in Computer Science and Software Engineering.Since it is a rapid developing technique and requires extensive project samples to help understand,current teaching mechanism has still limitations in rare real project examples,outdated course contents,and lack of automatic assessment platforms.In order to improve the teaching effects and cultivate students’practical ability,we employ this teaching reform with industrial projects,double instructors,and automatic assessment platform to allow students participating in every course process.We aim to improve students’practical and collaboration ability during conducting the project spontaneously,and cultivate their awareness of self-learning and lifelong learning.Our classroom feedback has demonstrated that this teaching reform is effective on improving students’practical abilities,learning initiatives and comprehensive qualities.展开更多
The new double projecting neurons were found in the cat spinal dorsal horn by the double retrograde fluorescent tracing technique.Fast Blue(FB)was injected into unilateral dorsal column nucleus(DCN)of adult cats anest...The new double projecting neurons were found in the cat spinal dorsal horn by the double retrograde fluorescent tracing technique.Fast Blue(FB)was injected into unilateral dorsal column nucleus(DCN)of adult cats anesthetized with pentobarbital.Nuclear Yellow(NY)was injected ipsilaterally into the lateral cervical nucleus(LCN)8-9 days later.After an additional 18-30 hrs.展开更多
Potential changes in precipitation extremes in July–August over China in response to CO 2 doubling are analyzed based on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (...Potential changes in precipitation extremes in July–August over China in response to CO 2 doubling are analyzed based on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and the 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). Evaluation of the models’ performance in simulating the mean state shows that the majority of models fairly reproduce the broad spatial pattern of observed precipitation. However, all the models underestimate extreme precipitation by ~50%. The spread among the models over the Tibetan Plateau is ~2–3 times larger than that over the other areas. Models with higher resolution generally perform better than those with lower resolutions in terms of spatial pattern and precipitation amount. Under the 1pctto2x scenario, the ratio between the absolute value of MME extreme precipitation change and model spread is larger than that of total precipitation, indicating a relatively robust change of extremes. The change of extreme precipitation is more homogeneous than the total precipitation. Analysis on the output of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) indicates that the spatially consistent increase of surface temperature and water vapor content contribute to the large increase of extreme precipitation over contiguous China, which follows the Clausius–Clapeyron relationship. Whereas, the meridionally tri-polar pattern of mean precipitation change over eastern China is dominated by the change of water vapor convergence, which is determined by the response of monsoon circulation to global warming.展开更多
This is the second part of the authors’ analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO 2 increase experiment (to doub...This is the second part of the authors’ analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). The study focuses on the potential changes of July–August temperature extremes over China. The pattern correlation coefficients of the simulated temperature with the observations are 0.6–0.9, which are higher than the results for precipitation. However, most models have cold bias compared to observation, with a larger cold bias over western China (5°C) than over eastern China (2°C). The multi-model ensemble (MME) exhibits a significant increase of temperature under the 1pctto2x scenario. The amplitude of the MME warming shows a northwest–southeast decreasing gradient. The warming spread among the models (~1°C– 2°C) is less than MME warming (~2°C–4°C), indicating a relatively robust temperature change under CO 2 doubling. Further analysis of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) simulations suggests that the warming pattern may be related to heat transport by summer monsoons. The contrast of cloud effects also has contributions. The different vertical structures of warming over northwestern China and southeastern China may be attributed to the different natures of vertical circulations. The deep, moist convection over southeastern China is an effective mechanism for "transporting" the warming upward, leading to more upper-level warming. In northwestern China, the warming is more surface-orientated, possibly due to the shallow, dry convection.展开更多
The Geospace Double Star Exploration Project (DSP) contains two small satel lites operating in the near-earth equatorial and polar regions respectively. The tasks of DSP are: (1) to provide high-resolution field, part...The Geospace Double Star Exploration Project (DSP) contains two small satel lites operating in the near-earth equatorial and polar regions respectively. The tasks of DSP are: (1) to provide high-resolution field, particle and wave mea surements in several important near-earth active regions which have not been covered by existing ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate he trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle storms, as well as the responses of geospace storms to solar activities and in terplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To complete the mission, there are eight instruments on board the equatorial satellite and the polar satellite, respectively. The orbit of the equatorial satellite is proposed with a perigee at 550km and an apogee at 60 000km, and the inclination is about 28.5°; while the orbit of the polar satellite with a perigee at 700 km and an apogee at 40 000 km, as well as an inclination about 90°. The equatorial and polar satellites are planed to be launched into orbits in June 2003 and December 2003 respectively to take coordinating measurements with Cluster Ⅱ and other missions.展开更多
The Geospace Double Star Project (DSP) consists of two small satellites operating in the near-earth equatorial and polar regions, respectively. The goals of DSP are: (1) to provide high-resolution field, particle, and...The Geospace Double Star Project (DSP) consists of two small satellites operating in the near-earth equatorial and polar regions, respectively. The goals of DSP are: (1) to provide high-resolution field, particle, and wave measurements in some important near-earth active regions which have not been covered by current ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate the trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle events,as well as the responses of geospace storms to solar activities and interplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To realize the above goals, the equatorial satellite TC-1 and the polar satellite TC-2 will accommodate, respectively, eight instruments on board. TC-1was launched successfully in December 2003 while the polar satellite (TC-2)will be launched in July 2004. The orbit of the equatorial satellite TC-1 consists of a perigee at 550 km, an apogee at 60 000 km, and an inclination of about 28.5; while the orbit of the polar satellite will have a perigee of 700 km, an apogee of 40 000 km, and an inclination of about 90. The two satellites will take coordinated measurements with Cluster Ⅱ and will first form a "six-point exploration" in geospace.The operational status of TC-1 are introduced in this paper.展开更多
To accelerate the scan speed and improve the image quality, a new type of CT configuration, "double-source double-multislice spiral CT" (DSDMS-CT), which is based on two sets of single-source multislice spir...To accelerate the scan speed and improve the image quality, a new type of CT configuration, "double-source double-multislice spiral CT" (DSDMS-CT), which is based on two sets of single-source multislice spiral CT was proposed with a special reconstruction algorithm. Simulation results using the fan-beam filtered backprojection algorithm with a special interpolation method were presented for both single-source multislice spiral CT and DSDMS-CT. The results of new CT model show that it scans faster than the traditional spiral CT and has a better slice sensitivity profile (SSP) with larger pitch value.展开更多
Observing nuclear neutrinoless double beta (0vββ) decay would be a revolutionary result in particle physics.Observing such a decay would prove that the neutrinos are their own antiparticles,help to study the absolut...Observing nuclear neutrinoless double beta (0vββ) decay would be a revolutionary result in particle physics.Observing such a decay would prove that the neutrinos are their own antiparticles,help to study the absolute mass of neutrinos,explore the origin of their mass,and may explain the matter-antimatter asymmetry in our universe by lepton number violation.We propose developing a time projection chamber (TPC) using high-pressure ^(82)SeF_(6) gas and Topmetal silicon sensors for readout in the China Jinping Underground Laboratory (CJPL) to search for neutrinoless double beta decay of82Se,called the NvDEx experiment.Besides being located at CJPL with the world’s thickest rock shielding,NvDEx combines the advantages of the high Qββ(2.996 MeV) of82Se and the TPC’s ability to distinguish signal and background events using their different topological characteristics.This makes NvDEx unique,with great potential for low-background and high-sensitivity 0 vββsearches.NvDEx-100,a NvDEx experiment phase with 100 kg of SeF_(6)gas,is being built,with plans to complete installation at CJPL by 2025.This report introduces 0 vββ physics,the NvDEx concept and its advantages,and the schematic design of NvDEx-100,its subsystems,and background and sensitivity estimation.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
文摘Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double colored CCD(short form of charge coupled device) was constructed in this paper.Two images captured by different CCD compensated each other which reduced the influence of noises.The application of the four-step phase-shifting method enabled the calculation of the exact phase in a point easy and quick.A large amount of 3D points with three coordinates X,Y and Z were obtained precisely making the definition and calculation of fabric smoothness characters easy.Then four parameters which intuitively denoted the fabric smoothness degree were obtained.Finally,a proper neural network was built,which successfully performed the fabric smoothness classification.The experimental results show that the system is applicable for all the fabric whatever pattern or color.The experimental grades provided by this grating projection system are also highly consistent with the subjective results.
文摘Mobile Application Development is a well-known undergraduate specialized course majoring in Computer Science and Software Engineering.Since it is a rapid developing technique and requires extensive project samples to help understand,current teaching mechanism has still limitations in rare real project examples,outdated course contents,and lack of automatic assessment platforms.In order to improve the teaching effects and cultivate students’practical ability,we employ this teaching reform with industrial projects,double instructors,and automatic assessment platform to allow students participating in every course process.We aim to improve students’practical and collaboration ability during conducting the project spontaneously,and cultivate their awareness of self-learning and lifelong learning.Our classroom feedback has demonstrated that this teaching reform is effective on improving students’practical abilities,learning initiatives and comprehensive qualities.
文摘The new double projecting neurons were found in the cat spinal dorsal horn by the double retrograde fluorescent tracing technique.Fast Blue(FB)was injected into unilateral dorsal column nucleus(DCN)of adult cats anesthetized with pentobarbital.Nuclear Yellow(NY)was injected ipsilaterally into the lateral cervical nucleus(LCN)8-9 days later.After an additional 18-30 hrs.
基金founded by National Key Technologies R&D Program under Grant No.2007BAC29B03R&D Special Fund for Public WelfareIndustry (meteorology) (GYHY200806010)China-UK-Swiss Adapting to Climate Change in China Project(ACCC)-Climate Science
文摘Potential changes in precipitation extremes in July–August over China in response to CO 2 doubling are analyzed based on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and the 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). Evaluation of the models’ performance in simulating the mean state shows that the majority of models fairly reproduce the broad spatial pattern of observed precipitation. However, all the models underestimate extreme precipitation by ~50%. The spread among the models over the Tibetan Plateau is ~2–3 times larger than that over the other areas. Models with higher resolution generally perform better than those with lower resolutions in terms of spatial pattern and precipitation amount. Under the 1pctto2x scenario, the ratio between the absolute value of MME extreme precipitation change and model spread is larger than that of total precipitation, indicating a relatively robust change of extremes. The change of extreme precipitation is more homogeneous than the total precipitation. Analysis on the output of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) indicates that the spatially consistent increase of surface temperature and water vapor content contribute to the large increase of extreme precipitation over contiguous China, which follows the Clausius–Clapeyron relationship. Whereas, the meridionally tri-polar pattern of mean precipitation change over eastern China is dominated by the change of water vapor convergence, which is determined by the response of monsoon circulation to global warming.
基金supported by R&D Special Fund for Public Welfare Industry (meteorology) (GYHY200806010)China–UK–Swiss Adapting to Climate Change in China Project (ACCC)–Climate Sciencethe National Key Technologies R&D Program under Grant No. 2007BAC29B03
文摘This is the second part of the authors’ analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). The study focuses on the potential changes of July–August temperature extremes over China. The pattern correlation coefficients of the simulated temperature with the observations are 0.6–0.9, which are higher than the results for precipitation. However, most models have cold bias compared to observation, with a larger cold bias over western China (5°C) than over eastern China (2°C). The multi-model ensemble (MME) exhibits a significant increase of temperature under the 1pctto2x scenario. The amplitude of the MME warming shows a northwest–southeast decreasing gradient. The warming spread among the models (~1°C– 2°C) is less than MME warming (~2°C–4°C), indicating a relatively robust temperature change under CO 2 doubling. Further analysis of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) simulations suggests that the warming pattern may be related to heat transport by summer monsoons. The contrast of cloud effects also has contributions. The different vertical structures of warming over northwestern China and southeastern China may be attributed to the different natures of vertical circulations. The deep, moist convection over southeastern China is an effective mechanism for "transporting" the warming upward, leading to more upper-level warming. In northwestern China, the warming is more surface-orientated, possibly due to the shallow, dry convection.
文摘The Geospace Double Star Exploration Project (DSP) contains two small satel lites operating in the near-earth equatorial and polar regions respectively. The tasks of DSP are: (1) to provide high-resolution field, particle and wave mea surements in several important near-earth active regions which have not been covered by existing ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate he trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle storms, as well as the responses of geospace storms to solar activities and in terplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To complete the mission, there are eight instruments on board the equatorial satellite and the polar satellite, respectively. The orbit of the equatorial satellite is proposed with a perigee at 550km and an apogee at 60 000km, and the inclination is about 28.5°; while the orbit of the polar satellite with a perigee at 700 km and an apogee at 40 000 km, as well as an inclination about 90°. The equatorial and polar satellites are planed to be launched into orbits in June 2003 and December 2003 respectively to take coordinating measurements with Cluster Ⅱ and other missions.
文摘The Geospace Double Star Project (DSP) consists of two small satellites operating in the near-earth equatorial and polar regions, respectively. The goals of DSP are: (1) to provide high-resolution field, particle, and wave measurements in some important near-earth active regions which have not been covered by current ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate the trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle events,as well as the responses of geospace storms to solar activities and interplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To realize the above goals, the equatorial satellite TC-1 and the polar satellite TC-2 will accommodate, respectively, eight instruments on board. TC-1was launched successfully in December 2003 while the polar satellite (TC-2)will be launched in July 2004. The orbit of the equatorial satellite TC-1 consists of a perigee at 550 km, an apogee at 60 000 km, and an inclination of about 28.5; while the orbit of the polar satellite will have a perigee of 700 km, an apogee of 40 000 km, and an inclination of about 90. The two satellites will take coordinated measurements with Cluster Ⅱ and will first form a "six-point exploration" in geospace.The operational status of TC-1 are introduced in this paper.
基金The National Natural Science Foundation ofChina (No30570511)
文摘To accelerate the scan speed and improve the image quality, a new type of CT configuration, "double-source double-multislice spiral CT" (DSDMS-CT), which is based on two sets of single-source multislice spiral CT was proposed with a special reconstruction algorithm. Simulation results using the fan-beam filtered backprojection algorithm with a special interpolation method were presented for both single-source multislice spiral CT and DSDMS-CT. The results of new CT model show that it scans faster than the traditional spiral CT and has a better slice sensitivity profile (SSP) with larger pitch value.
基金This work was supported by the National Key Research and Development Program of China(Nos.2021YFA1601300 and 2022YFA1604703)From-0-to-1 Original Innovation Program of Chinese Academy of Sciences(No.ZDBS-LY-SLH014)+1 种基金International Partner Program of Chinese Academy of Sciences(No.GJHZ2067)National Natural Science Foundation of China Youth Science Fund Project(No.12105110).
文摘Observing nuclear neutrinoless double beta (0vββ) decay would be a revolutionary result in particle physics.Observing such a decay would prove that the neutrinos are their own antiparticles,help to study the absolute mass of neutrinos,explore the origin of their mass,and may explain the matter-antimatter asymmetry in our universe by lepton number violation.We propose developing a time projection chamber (TPC) using high-pressure ^(82)SeF_(6) gas and Topmetal silicon sensors for readout in the China Jinping Underground Laboratory (CJPL) to search for neutrinoless double beta decay of82Se,called the NvDEx experiment.Besides being located at CJPL with the world’s thickest rock shielding,NvDEx combines the advantages of the high Qββ(2.996 MeV) of82Se and the TPC’s ability to distinguish signal and background events using their different topological characteristics.This makes NvDEx unique,with great potential for low-background and high-sensitivity 0 vββsearches.NvDEx-100,a NvDEx experiment phase with 100 kg of SeF_(6)gas,is being built,with plans to complete installation at CJPL by 2025.This report introduces 0 vββ physics,the NvDEx concept and its advantages,and the schematic design of NvDEx-100,its subsystems,and background and sensitivity estimation.