The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting th...The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.展开更多
With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even...With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.展开更多
Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment,...Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.展开更多
We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve...We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.展开更多
Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper prop...Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper proposes an Eco-Route Planner devoted to determine and communicate to the drivers of Heavy-Duty Vehicles(HDVs)the eco-route that guarantees the minimum fuel consumption by respecting the travel time established by the freight companies.The proposed eco-route is the optimal route from origin to destination and includes the optimized speed and gear profiles.To this aim,the Cloud Computing System architecture is composed of two main components:the Data Management System that collects,fuses and integrates the raw external sources data and the Cloud Optimizer that builds the route network,selects the eco-route and determines the optimal speed and gear profiles.Finally,a real case study is discussed by showing the benefit of the proposed Eco-Route planner.展开更多
AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by ...AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by eight endoscopists after they had been on(ND group, n = 34 patients) or not [day duty(DD) group, n = 99 patients]. Patient characteristics(age, gender, history of abdominal surgery, transverse diameter of the largest stone, number of stones), years of experience of the endoscopists, endoscopic procedures [sphincterotomy, papillary balloon dilation(EPBD), papillary large balloon dilation(EPLBD)], and outcomes of initial endoscopy(procedure time; rate of stone removal by the first endoscopist; proceduresuccess rate by the first endoscopist: removal of stones or endoscopic retrograde biliary drainage; rate of final stone removal; final procedure success rate; complications; hospitalization after the procedure) were compared retrospectively between the two groups. History of abdominal surgery and treatment outcomes were also compared between the groups for each of the four endoscopists who performed most of the procedures in the ND group.RESULTS There were no significant differences regarding the number of treatments performed by each endoscopist or the years of experience between the ND and DD groups. The frequency of endoscopic retrograde cholangiopancreatography procedures did not differ significantly between the groups. There were also no significant differences regarding patient characteristics: age, gender, history of abdominal surgery(ND 7: Billroth II 4, R-Y 3; DD 18: double tract reconstruction 1, Billroth I 3, Billroth II 6, R-Y 7, duodenoduodenostomy for annular pancreas 1), transverse diameter of largest stone, and number of stones between the two groups. Among the treatment procedures, the endoscopic s p h i n c t e r o t o m y a n d E P B D r a t e s d i d n o t d i f f e r significantly between the groups. However, EPLBD was performed more frequently in the ND group [47.1%(16/34) v s 19.2%(19/99)]. Regarding outcomes, there were no significant differences in the rate of stone removal, procedure success rate, complications(ND: pancreatitis 1; DD: pancreatitis 6, duodenal bleeding 1, decreased blood pressure 1, hypoxia 2), or hospitalization after the procedure. However, the procedure time was significantly longer in the ND group(71.5 ± 44.7 vs 54.2 ± 28.8). Among the four endoscopists, there were no significant differences in patient history of abdominal surgery, removal of stones, or procedure success rate. However, the procedure time for one endoscopist was significantly longer in the ND group.CONCLUSION The time required for endoscopic therapy for bile duct stones might be influenced by ND.展开更多
The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks ...The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.展开更多
SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the...SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the optimal duty cycle is about 67%. The primary phase of SnS∶Ag films deposited on optimum parameters condition is SnS compound with good crystallization, and the films prefer to grow towards (111) plane. The films are dense, smooth and uniform with good microstructure, and the grains in the films are densely packed together, and their direct bandgap is about 1.40 eV. In addition, the bandgap of the films first rises and then drops with the increase of the duty cycle.展开更多
Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,f...Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.展开更多
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
文摘The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.
基金This work is supported by“National Science Foundation of Hunan Province,China”under Grant 2020JJ4757.
文摘With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.
基金supported by the Specialized Research Fund for Doctoral Program of Higher Education,SPFDP-200806990003the Foundation for Fundamental Research of the Northwestern Polytechnical University,NPU-FFR-W018102
文摘Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.
文摘We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.
基金the European Project opti Truck(optimal fuel consumption with predictive power train control and calibration for intelligent Truck)of the H2020 innovation programme。
文摘Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper proposes an Eco-Route Planner devoted to determine and communicate to the drivers of Heavy-Duty Vehicles(HDVs)the eco-route that guarantees the minimum fuel consumption by respecting the travel time established by the freight companies.The proposed eco-route is the optimal route from origin to destination and includes the optimized speed and gear profiles.To this aim,the Cloud Computing System architecture is composed of two main components:the Data Management System that collects,fuses and integrates the raw external sources data and the Cloud Optimizer that builds the route network,selects the eco-route and determines the optimal speed and gear profiles.Finally,a real case study is discussed by showing the benefit of the proposed Eco-Route planner.
文摘AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by eight endoscopists after they had been on(ND group, n = 34 patients) or not [day duty(DD) group, n = 99 patients]. Patient characteristics(age, gender, history of abdominal surgery, transverse diameter of the largest stone, number of stones), years of experience of the endoscopists, endoscopic procedures [sphincterotomy, papillary balloon dilation(EPBD), papillary large balloon dilation(EPLBD)], and outcomes of initial endoscopy(procedure time; rate of stone removal by the first endoscopist; proceduresuccess rate by the first endoscopist: removal of stones or endoscopic retrograde biliary drainage; rate of final stone removal; final procedure success rate; complications; hospitalization after the procedure) were compared retrospectively between the two groups. History of abdominal surgery and treatment outcomes were also compared between the groups for each of the four endoscopists who performed most of the procedures in the ND group.RESULTS There were no significant differences regarding the number of treatments performed by each endoscopist or the years of experience between the ND and DD groups. The frequency of endoscopic retrograde cholangiopancreatography procedures did not differ significantly between the groups. There were also no significant differences regarding patient characteristics: age, gender, history of abdominal surgery(ND 7: Billroth II 4, R-Y 3; DD 18: double tract reconstruction 1, Billroth I 3, Billroth II 6, R-Y 7, duodenoduodenostomy for annular pancreas 1), transverse diameter of largest stone, and number of stones between the two groups. Among the treatment procedures, the endoscopic s p h i n c t e r o t o m y a n d E P B D r a t e s d i d n o t d i f f e r significantly between the groups. However, EPLBD was performed more frequently in the ND group [47.1%(16/34) v s 19.2%(19/99)]. Regarding outcomes, there were no significant differences in the rate of stone removal, procedure success rate, complications(ND: pancreatitis 1; DD: pancreatitis 6, duodenal bleeding 1, decreased blood pressure 1, hypoxia 2), or hospitalization after the procedure. However, the procedure time was significantly longer in the ND group(71.5 ± 44.7 vs 54.2 ± 28.8). Among the four endoscopists, there were no significant differences in patient history of abdominal surgery, removal of stones, or procedure success rate. However, the procedure time for one endoscopist was significantly longer in the ND group.CONCLUSION The time required for endoscopic therapy for bile duct stones might be influenced by ND.
文摘The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.
基金National Nature Sciences Funding of China(61076063)Key Project of Fujian Provincial Department of Science &Technology(2008I0019)Fujian Provincial Natural Science Foundation of China(2009J01285)
文摘SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the optimal duty cycle is about 67%. The primary phase of SnS∶Ag films deposited on optimum parameters condition is SnS compound with good crystallization, and the films prefer to grow towards (111) plane. The films are dense, smooth and uniform with good microstructure, and the grains in the films are densely packed together, and their direct bandgap is about 1.40 eV. In addition, the bandgap of the films first rises and then drops with the increase of the duty cycle.
文摘Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.