期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Innovative Teaching Approach Based on Finite Element Technique in Material Mechanics for Vocational Education
1
作者 Xuesong Zhen Fei Peng Shuo Zhang 《Journal of Contemporary Educational Research》 2023年第8期18-23,共6页
This paper proposed an innovative teaching approach based on finite element technique(FET)to improve the understanding of material mechanics.A teaching experiment was conducted using pure bending deformation of a beam... This paper proposed an innovative teaching approach based on finite element technique(FET)to improve the understanding of material mechanics.A teaching experiment was conducted using pure bending deformation of a beam as an example,and the deformation and stress distribution of the beam were analyzed using FET.The results showed that using color stress nephograms and color U nephograms can improve students’learning outcomes in mechanics classroom.The high levels of satisfaction and interest in incorporating new techniques into the classroom suggest that there is a need to explore and develop innovative teaching methods in mechanics and related fields.This approach may inspire educators to develop more effective ways of teaching material mechanics,and our research can contribute to the advancement of mechanics education. 展开更多
关键词 material mechanics Finite element technique FET TEACHING Vocational education
下载PDF
Challenges and Countermeasures in the Teaching of Material Mechanics in Vocational Colleges
2
作者 Shang Wang Jinru Ma +1 位作者 Xuesong Zhen Jie Yu 《Journal of Contemporary Educational Research》 2022年第4期24-31,共8页
Material Mechanics is an important subject for science and engineering students in vocational colleges.However,its teaching effect has not been up to par for a long time.In order to improve the teaching quality,this p... Material Mechanics is an important subject for science and engineering students in vocational colleges.However,its teaching effect has not been up to par for a long time.In order to improve the teaching quality,this paper discusses four problems existing in the teaching of Material Mechanics and proposes corresponding countermeasures.Rich animations and Mises stress nephograms can be formed using new techniques,such as finite element simulation,making it easier for students to understand abstract concepts.The introduction of engineering-related cases can enhance students’interest,and students’hands-on skills and innovation can be improved with open mechanics laboratory.The suggestions are worthy of reference and should be flexibly applied to the teaching of Material Mechanics. 展开更多
关键词 material mechanics TEACHING Vocational colleges Vocational education COUNTERMEASURES
下载PDF
Field-assisted machining of difficult-to-machine materials
3
作者 Jianguo Zhang Zhengding Zheng +5 位作者 Kai Huang Chuangting Lin Weiqi Huang Xiao Chen Junfeng Xiao Jianfeng Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期39-89,共51页
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining... Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies. 展开更多
关键词 field-assisted machining difficult-to-machine materials materials removal mechanism surface integrity
下载PDF
Unleashing the Potential of Unidirectional Mechanical Materials: Breakthroughs and Promising Applications
4
作者 Sunil Harripersad 《Materials Sciences and Applications》 2024年第4期66-86,共21页
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ... The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use. 展开更多
关键词 Mechanically One-Way materials Nonreciprocal Mechanical Responses Directed Sound Propagation Controlled Mass Transport Energy Harvesting Structural Engineering Economic Viability Environmental Impact
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review 被引量:4
5
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
MATERIAL MULTIPOLE MECHANICS OF ELASTIC DIELECTRIC COMPOSITES
6
作者 周树昂 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第3期215-237,共23页
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult... The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites. 展开更多
关键词 BODY material MULTIPOLE mechanics OF ELASTIC DIELECTRIC COMPOSITES
下载PDF
Editorial: Mechanics of soft materials, structures and systems
7
作者 Chaofeng L Wen Chen +2 位作者 Jinxiong Zhou Shaoxing Qu Weiqiu Chen 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期13-13,共1页
The concept of soft matter was first introduced by P. G. de Gennes in his acceptance speech for the No-bel Physics Prize in 1991. In mechanics community, however, people usually prefer using soft material in-stead of ... The concept of soft matter was first introduced by P. G. de Gennes in his acceptance speech for the No-bel Physics Prize in 1991. In mechanics community, however, people usually prefer using soft material in-stead of soft matter to describe the material whose en-ergy associated with thermal motion is comparative to the interaction energy. Unlike in the conventional con-densed matter, entropy plays an important and even de-terminative role in soft materials. 展开更多
关键词 EDITORIAL mechanics of soft materials structures and systems
下载PDF
Editorial: Computational mechanics of granular materials
8
作者 Xikui Li Xiaojing Zheng 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期9-9,共1页
Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- ample... Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level 展开更多
关键词 Computational mechanics of granular materials EDITORIAL
下载PDF
Editorial:Mechanics of intelligent materials and structures
9
作者 Jie Wang Weiqiu Chen You-He Zhou 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第2期59-60,共2页
Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil stru... Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices. 展开更多
关键词 Editorial:mechanics of intelligent materials and structures
下载PDF
A new elastoplastic model for bolt-grouted fractured rock
10
作者 Haoyi Li Shuangying Zuo Peiyuan Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期995-1016,共22页
Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bol... Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations. 展开更多
关键词 Bolt-grouted fractured rock mass Elastoplastic model Composite materials mechanics Laboratory experiment
下载PDF
Energy beam-based direct and assisted polishing techniques for diamond:A review
11
作者 Zhuo Li Feng Jiang +7 位作者 Zhengyi Jiang Zige Tian Tian Qiu Tao Zhang Qiuling Wen Xizhao Lu Jing Lu Hui Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期93-124,共32页
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu... Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented. 展开更多
关键词 single crystal diamond polycrystalline diamond energy beam polishing technology material removal mechanism influencing factors
下载PDF
Study of the material removal mechanism of glass-ceramics based on consecutive incremental loading in ductile-regime grinding 被引量:2
12
作者 Xue Li 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第2期88-95,共8页
Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has... Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts. 展开更多
关键词 GRINDING GLASS-CERAMICS Scratch tests material removal mechanism Consecutive incremental loading
下载PDF
Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates 被引量:4
13
作者 Zige Tian Xun Chen Xipeng Xu 《International Journal of Extreme Manufacturing》 EI 2020年第4期86-100,共15页
Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physica... Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality. 展开更多
关键词 material removal mechanism molecular dynamics simulation subsurface defects SCRATCHING 4H-SiC and 6H-SiC
下载PDF
An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression 被引量:9
14
作者 Yan-Hua Huang Sheng-Qi Yang +2 位作者 Wen-Ling Tian Wei Zeng Li-Yuan Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期442-455,共14页
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce... Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. 展开更多
关键词 Rock-like material Two unparallel fissures Mechanical parameters Crack evolution Acoustic emission(AE)
下载PDF
Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material 被引量:1
15
作者 Jiajun Lu Shunda Zhan +1 位作者 Bowen Liu Yonghua Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期215-233,共19页
Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the ... Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the progress of electrochemical dissolution.This research demonstrates for the first time a jet-electrolytic plasma micromachining(Jet-EPM)method to overcome this problem.Specifically,an electrolytic plasma is intentionally induced at the jet-material contact area by applying a potential high enough to surmount the surface boundary layer(such as a passive film or gas bubble)and enable material removal.Compared to traditional EJM,introducing plasma in the electrochemical jet system leads to considerable differences in machining performance due to the inclusion of plasma reactions.In this work,the implementation of Jet-EPM for fabricating microstructures in the semiconductor material 4H-SiC is demonstrated,and the machining principle and characteristics of Jet-EPM,including critical parameters and process windows,are comprehensively investigated.Theoretical modeling and experiments have elucidated the mechanisms of plasma ignition/evolution and the corresponding material removal,showing the strong potential of Jet-EPM for micromachining chemically resistant materials.The present study considerably augments the range of materials available for processing by the electrochemical jet technique. 展开更多
关键词 electrochemical jet machining electrolytic plasma PASSIVATION oxide film breakdown material removal mechanism
下载PDF
Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-Ⅱ Delamination 被引量:2
16
作者 周伟 吕智慧 +3 位作者 王雅瑞 刘然 陈维业 李晓彤 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期73-76,共4页
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi... Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites. 展开更多
关键词 der DELAMINATION Acoustic Response and Micro-Damage Mechanism of Fiber Composite materials under Mode
下载PDF
A Simple Way to Prepare Silicon Carbide Reinforced Graphite Composite Lubricating Materials 被引量:2
17
作者 韩永军 燕青芝 LI Xianhui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期288-291,共4页
SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open poros... SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open porosity, flexural strength, and friction behavior were investigated. The addition of 30vol% Si C increased the bending strength of composites materials to 127 MPa, 2 times higher than 60 MPa of commercial pure graphite block. What was particularly interesting was that the as-obtained graphite composite with 30vol% Si C kept the same low friction coefficient of about 0.1 as pure graphite, and the wear resistance of composites increased. 展开更多
关键词 lubricating materials silicon carbide mechanical property tribological property
下载PDF
Editorial: Special subject on the mechanical behavior of thermal protection materials and structures 被引量:2
18
作者 Songhe Meng Huimin Xie 《Theoretical & Applied Mechanics Letters》 CAS 2014年第2期17-18,共2页
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso... The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors. 展开更多
关键词 SIC Special subject on the mechanical behavior of thermal protection materials and structures EDITORIAL
下载PDF
Microstructure and Mechanical Properties of ZrO_2-Ni Functionally Gradient Material 被引量:1
19
作者 Jingchuan ZHU Zhongda YIN and Zhonghong LAI(Dept. of Metals and Technology, Harbin Institute of Technology, Harbin, 150001. China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期188-192,共5页
The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X... The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well 展开更多
关键词 FGM PSZ Microstructure and Mechanical Properties of ZrO2-Ni Functionally Gradient material NI
下载PDF
Heat transport in low-dimensional materials: A review and perspective 被引量:1
20
作者 Zhiping Xu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第3期113-121,共9页
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t... Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges. 展开更多
关键词 Nanoscale heat transport Low-dimensional materials Defects Disorder Interfaces Quantum mechanical effects
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部