Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 ...Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 on air pollution(only papers included in the Web of Science Core Collection database were considered),more than 24000 papers were authored or co-authored by scientists working in China.In this paper,we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years,including studies on(1)sources and emission inventories,(2)atmospheric chemical processes,(3)interactions of air pollution with meteorology,weather and climate,(4)interactions between the biosphere and atmosphere,and(5)data assimilation.The intention was not to provide a complete review of all progress made in the last few years,but rather to serve as a starting point for learning more about atmospheric chemistry research in China.The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established,provided robust scientific support to highly successful air pollution control policies in China,and created great opportunities in education,training,and career development for many graduate students and young scientists.This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances,whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China,to hopefully be addressed over the next few decades.展开更多
The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-simil...The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.91844000)。
文摘Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 on air pollution(only papers included in the Web of Science Core Collection database were considered),more than 24000 papers were authored or co-authored by scientists working in China.In this paper,we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years,including studies on(1)sources and emission inventories,(2)atmospheric chemical processes,(3)interactions of air pollution with meteorology,weather and climate,(4)interactions between the biosphere and atmosphere,and(5)data assimilation.The intention was not to provide a complete review of all progress made in the last few years,but rather to serve as a starting point for learning more about atmospheric chemistry research in China.The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established,provided robust scientific support to highly successful air pollution control policies in China,and created great opportunities in education,training,and career development for many graduate students and young scientists.This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances,whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China,to hopefully be addressed over the next few decades.
文摘The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.