期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mathematical Modeling of Heat Transfer Processes of Coal Waste Combustion in a Chamber of Automated Energy Generating Complex 被引量:1
1
作者 Sergey P. Mochalov Sergey N. Kalashnikov +2 位作者 Pavel S. Mochalov Guolin Song Guoyi Tang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期174-179,共6页
The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into... The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units. 展开更多
关键词 heat transfer heat conduction equation boundary conditions the heat transfer coefficient tempera-ture distribution.
原文传递
Numerical Investigation on Convective Heat Transfer of Supercritical Carbon Dioxide in a Mini Tube Considering Entrance Effect 被引量:2
2
作者 LIU Meng JIANG Xinying +2 位作者 FANG Yufeng GUO Menglei DING Chen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第6期1986-2001,共16页
There are more and more researches on heat transfer characteristics and prediction of supercritical CO_(2).The method of adding adiabatic section before and after heating section is usually adopted in these researches... There are more and more researches on heat transfer characteristics and prediction of supercritical CO_(2).The method of adding adiabatic section before and after heating section is usually adopted in these researches to ensure that the fluid entering the heating section is no longer affected by boundary layer,but the appropriate length range of adiabatic section and the influence of entrance effect are not discussed.However,some studies show that the entrance effect would affect the heat transfer in mini tubes.This paper uses the commercial CFD code FLUENT 19.0 to numerically study the heat transfer of supercritical CO_(2) in a mini tube under different working conditions(such as Re_(in),P_(in),q_(w) and flow direction)and the lengths of the adiabatic section(l_(as)/d).The entrance effects on heat transfer is more pronounced when Re_(in) is within the transition state and wall heat flux is relatively high,the resulting heat transfer deterioration causes T_(w,x) and h_(w,x) to rise sharply.As the adiabatic section increases,the location at which the heat exchange deteriorates moves to the entrance of the heating section and eventually leaves.The buoyancy effect and flow acceleration effect caused by the sharp change of physical properties are analyzed,and the dimensionless velocity distribution at the inlet of the heating section in different adiabatic sections is compared.It is proved that the entrance effect has an influence on the convection heat transfer of supercritical CO_(2) in mini tubes.The interaction reflected by wall shear stress between boundary layer development and drastic changes in physical properties is the cause of heat transfer deterioration. 展开更多
关键词 supercritical C0_(2) low inlet Reynolds number high wall heat flux entrance effect the exacerbation of the heat transfer deterioration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部