BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental di...BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental diseases,and improve prognosis.AIM To analyze the value of extended nursing based on the self-efficacy theory in older patients with intertrochanteric fractures.METHODS Older patients with intertrochanteric fractures(n=88)admitted to our hospital between January 2021 and December 2024 were randomly divided into two groups-the control group(n=44,routine nursing)and the observation group(n=44,extended nursing)-via balloting and treated for 12 weeks.The mental state,pain severity,limb function,and self-nursing ability of all patients before and after nursing were analyzed.RESULTS After nursing,the Hamilton Anxiety Scale and General Self-Efficacy Scale scores of patients in the two groups improved.Notably,Hamilton Anxiety Scale and General Self-Efficacy Scale scores in the observation group were lower and higher,respectively,than those in the control group(P<0.05).The pain severity in the observation group(2.64±0.22)was lower than that in the control group(2.85±0.41)(P<0.05).The recovery rate of limb function was higher in the observation group than in the control group(P<0.05).In addition,the self-nursing ability scores of the patients in both groups increased,with a significantly higher score in the observation group(P<0.05).CONCLUSION Extended nursing based on the self-efficacy theory can significantly improve mental state,relieve pain,and promote the recovery of limb function and self-nursing ability in older patients with intertrochanteric fractures.展开更多
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe...This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.展开更多
Internet buzzwords,as distinct forms of language,consist of short sentences yet carry rich meanings and spread rapidly.To better study this intriguing and unique linguistic phenomenon,this paper employed conceptual in...Internet buzzwords,as distinct forms of language,consist of short sentences yet carry rich meanings and spread rapidly.To better study this intriguing and unique linguistic phenomenon,this paper employed conceptual integration theory for its powerful explanatory capabilities to analyze the origins,composition,and emergence of meanings of internet buzzwords over the past four years.These 40 internet buzzwords can be categorized into five types:semantic derivation,generalization,abbreviation,metonymy,and compounding.Furthermore,this paper conducted cognitive analysis from different conceptual integration network perspectives,elucidating specific cognitive operations involved in the construction of meanings and revealing the emergence process of layered meanings in recent internet buzzwords over the past four years.展开更多
In the new era of building a socialist modernization country with the goal of promoting high-quality development,we deeply analyze the knowledge system of the Introduction to Architecture course.This analysis is based...In the new era of building a socialist modernization country with the goal of promoting high-quality development,we deeply analyze the knowledge system of the Introduction to Architecture course.This analysis is based on the cross-disciplinary specialties of local applied universities and the orientation of prioritizing employment and integrating industry and education.We propose the teaching reform of“theory-practice alternation”which is adapted to the current times and societal needs.Finally,we comprehensively summarize the effectiveness of curriculum construction,in order to provide theoretical references for the implementation of fostering character and civic virtue and deepening the reform of collaborative education mechanisms.展开更多
With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses...With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses in higher education for science and engineering majors and economics and management majors.Its critical role in cultivating students’thinking skills and improving their problem-solving skills is self-evident.Course ideological and political education construction is an important link in college talent training work.Combining ideological and political education with course teaching can help students establish correct value concepts and play a certain role in improving their comprehensive ability and quality.At present,the construction of ideological and political education in the Probability Theory and Mathematical Statistics course still faces some problems,mainly manifested in the lack of attention paid by teachers to course ideological and political education,insufficient exploitation of ideological and political elements,and the simplification of ideological and political education implementation methods.In order to comprehensively deepen the construction of course ideological and political education in line with the actual needs of Probability Theory and Mathematical Statistics course teaching,we should strengthen the construction of teacher teams,improve teachers’ability to carry out course ideological and political education,integrate educational resources,develop educational resources for ideological and political education,and innovate teaching methods to improve the overall effect of ideological and political education integration.展开更多
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chron...BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chronic diseases and complex patients require comprehensive management strategies to reduce healthcare burdens and improve patient outcomes.If proven effective,this pilot model has the potential to be replicated in other healthcare settings to enhance the management of chronic multimorbid patients.AIM To evaluate the effectiveness of the high complexity unit(HCU)in managing chronic multimorbid patients through a multidisciplinary care model and to compare it with standard hospital care.METHODS The study employed a descriptive longitudinal approach,analyzing data from the Basic Minimum Data Set(BMDS)to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.RESULTS The study employed a descriptive longitudinal approach,analyzing data from the BMDS to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.CONCLUSION This study demonstrates the effectiveness of the HCU in managing patients with complex chronic diseases through a multidisciplinary approach.The coordinated care provided by the HCU results in improved patient outcomes,reduced unnecessary hospitalizations,and better management of patient complexity.The superiority of the HCU compared to standard care is evident in key outcomes such as fewer readmissions and higher patient satisfaction,reinforcing its value as a model of care to be replicated.展开更多
BACKGROUND Patients with BRAF V600E mutant metastatic colorectal cancer(mCRC)have a low incidence rate,poor biological activity,suboptimal response to conventional treatments,and a poor prognosis.In the previous cohor...BACKGROUND Patients with BRAF V600E mutant metastatic colorectal cancer(mCRC)have a low incidence rate,poor biological activity,suboptimal response to conventional treatments,and a poor prognosis.In the previous cohort study on mCRC conducted by our team,it was observed that integrated Chinese and Western medicine treatment could significantly prolong the overall survival(OS)of patients with colorectal cancer.Therefore,we further explored the survival benefits in the population with BRAF V600E mutant mCRC.AIM To evaluate the efficacy of integrated Chinese and Western medicine in the treatment of BRAF V600E mutant metastatic colorectal cancer.METHODS A cohort study was conducted on patients with BRAF V600E mutant metastatic colorectal cancer admitted to Xiyuan Hospital of China Academy of Chinese Medical Sciences and Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region from January 2016 to December 2022.The patients were divided into two cohorts.RESULTS A total of 34 cases were included,with 23 in Chinese-Western medicine cohort(cohort A)and 11 in Western medicine cohort(cohort B).The median overall survival was 19.9 months in cohort A and 14.2 months in cohort B,with a statistically significant difference(P=0.038,hazard ratio=0.46).The 1-3-year survival rates were 95.65%(22/23),39.13%(9/23),and 26.09%(6/23)in cohort A,and 63.64%(7/11),18.18%(2/11),and 9.09%(1/11)in cohort B,respectively.Subgroup analysis showed statistically significant differences in median OS between the two cohorts in the right colon,liver metastasis,chemotherapy,and first-line treatment subgroups(P<0.05).CONCLUSION Integrated Chinese and Western medicine can prolong the survival and reduce the risk of death in patients with BRAF V600E mutant metastatic colorectal cancer,with more pronounced benefits observed in patients with right colon involvement,liver metastasis,combined chemotherapy,and first-line treatment.展开更多
Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary a...Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.展开更多
The application of fungicides is an effective strategy for controlling plant diseases.Among these agents,plant-derived antifungal metabolites are particularly promising due to their eco-friendly and sustainable nature...The application of fungicides is an effective strategy for controlling plant diseases.Among these agents,plant-derived antifungal metabolites are particularly promising due to their eco-friendly and sustainable nature.Plant secondary metabolites typically exhibit broad-spectrum antifungal activity without selective toxicity against pathogens.However,only a small fraction of antifungal metabolites have been identified from the tens of thousands of known plant secondary metabolites.In this study,we conducted a metabolomic analysis on both blast-resistant(Digu)and-susceptible(Lijiangxintuanheigu)rice varieties to uncover novel metabolites that enhance blast resistance.We found that 24 and 48 h post-inoculation with Magnaporthe oryzae were critical time points for metabolomic profiling,based on the infected status of M.oryzae in rice and the observed differences in shikimate accumulation between the two varieties.Following metabolomic analysis,we identified nine flavonoids that were differentially accumulated and are considered potential candidates for disease control.Among these,apigenin-7-glucoside,rhamnetin,and spireoside were found to be effective in controlling blast disease,with spireoside demonstrating the most pronounced efficacy.We discovered that spireoside controlled blast disease by inhibiting both spore germination and appressorium formation in M.oryzae,primarily through disrupting cell membrane integrity.However,spireoside did not induce rice immunity.Furthermore,spireoside was also effective in controlling sheath blight disease.Thus,spireoside shows considerable promise as a candidate for the development of a fungicide for controlling plant diseases.展开更多
BACKGROUND Patients with depression following coronary heart disease often exhibit insufficient psychological resilience and self-care abilities;therefore,emphasis must be placed on nursing interventions.AIM To analyz...BACKGROUND Patients with depression following coronary heart disease often exhibit insufficient psychological resilience and self-care abilities;therefore,emphasis must be placed on nursing interventions.AIM To analyze the application value of problem-oriented education combined with nursing interventions based on the Snyder hope theory model in depressed patients after percutaneous coronary intervention(PCI).METHODS This study included 150 patients diagnosed with PCI postoperative depression because of coronary heart disease between February 2022 and February 2024.Participants were divided into two groups:A control group(n=75)receiving problem-oriented education and an observation group(n=75)receiving combined nursing interventions based on the Snyder hope theory model.Depression status,psychological resilience,self-care ability,and quality of life were compared between the two groups.RESULTS Before nursing interventions,there were no significant differences between the two groups(P>0.05).After the interventions,depression scores decreased while psychological resilience,self-care ability,and quality of life scores increased significantly in the observation group compared to that in the control group,with statistically significant differences noted(P<0.05).This combined approach can enhance psychological resilience,improve self-care abilities,and elevate the overall quality of life,warranting further promotion in clinical practice.CONCLUSION Combination of problem-oriented education and nursing interventions based on the Snyder hope theory model effectively alleviates depression in patients following PCI for coronary heart disease.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
The international scientific literature presents still incipient results regarding the management of cancer symptom clusters by oncology nursing,especially in pediatric oncology.This is a promising field of investigat...The international scientific literature presents still incipient results regarding the management of cancer symptom clusters by oncology nursing,especially in pediatric oncology.This is a promising field of investigation for clinical nurses and researchers,and when it is subsidized by medium-range theories,they co-rroborate the diagnoses and interventions of nursing in oncology,enhancing the science of nursing care.This minireview article aims to discuss the utilizing the hospital clowns as a complementary therapy,to enhance quality of life and reduce stress and fatigue in pediatric cancer patients.Overall,the evidence presented so far pointed out that complementary therapy might help improve the quality of life of pediatric cancer patients,and that complementary therapy usage should be part of a health comprehensive care model,delivering therapeutic approaches that might enhance the mind-body during a pediatric cancer patients’life span.The results of scientific investigations by nurses,particularly those linked to the basic sciences,play a critical role in advancing personalized care in pediatric integrative oncology.展开更多
This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stabili...This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stability analysis.Unlike traditional probabilistic techniques,this approach utilizes a least squares support vector machine(LSSVM)optimized with a grey wolf optimizer(GWO)and K-fold cross-validation(CV)to approximate the limit-statefunction,thus reducing computational complexity.The novelty of this work lies in its application to one-dimensional(1D),two-dimensional(2D),and three-dimensional(3D)slope models,demonstrating its versatility andhigh precision.The proposed method consistently achieves error margins within 3%of Monte Carlo simulation(MCS)results,while substantially reducing computation time,particularly for 2D and 3D models.This makes theapproach highly practical for real-world engineering applications.Furthermore,by applying fuzzy mathematics tohandle uncertainties in geotechnical properties,the method offers a more realistic and comprehensive understandingof slope stability.As water is the main factor influencing the stability of slopes,this aspect is investigatedby calculating the phreatic line after the change in water level.Relevant examples are used to show that the failureprobability of a slope under water wading condition can increase by more than 20%(increase rates in 1D,2D and3D conditions being 25%,27%and 31%,respectively)compared with the natural condition.The influence ofdiverse fuzzy membership functions—linear,normal,and Cauchy—on failure probability is also considered.Thisresearch not only provides a strategy for better calculation of the slope failure probability but also pioneers theintegration of computational intelligence,fuzzy logic and fluid-dynamics in geotechnical engineering,presentingan innovative and efficient tool for slope stability analysis.展开更多
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e...BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
文摘BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental diseases,and improve prognosis.AIM To analyze the value of extended nursing based on the self-efficacy theory in older patients with intertrochanteric fractures.METHODS Older patients with intertrochanteric fractures(n=88)admitted to our hospital between January 2021 and December 2024 were randomly divided into two groups-the control group(n=44,routine nursing)and the observation group(n=44,extended nursing)-via balloting and treated for 12 weeks.The mental state,pain severity,limb function,and self-nursing ability of all patients before and after nursing were analyzed.RESULTS After nursing,the Hamilton Anxiety Scale and General Self-Efficacy Scale scores of patients in the two groups improved.Notably,Hamilton Anxiety Scale and General Self-Efficacy Scale scores in the observation group were lower and higher,respectively,than those in the control group(P<0.05).The pain severity in the observation group(2.64±0.22)was lower than that in the control group(2.85±0.41)(P<0.05).The recovery rate of limb function was higher in the observation group than in the control group(P<0.05).In addition,the self-nursing ability scores of the patients in both groups increased,with a significantly higher score in the observation group(P<0.05).CONCLUSION Extended nursing based on the self-efficacy theory can significantly improve mental state,relieve pain,and promote the recovery of limb function and self-nursing ability in older patients with intertrochanteric fractures.
基金supported by the National Natural Science Foundation of China(82230117).
文摘This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.
文摘Internet buzzwords,as distinct forms of language,consist of short sentences yet carry rich meanings and spread rapidly.To better study this intriguing and unique linguistic phenomenon,this paper employed conceptual integration theory for its powerful explanatory capabilities to analyze the origins,composition,and emergence of meanings of internet buzzwords over the past four years.These 40 internet buzzwords can be categorized into five types:semantic derivation,generalization,abbreviation,metonymy,and compounding.Furthermore,this paper conducted cognitive analysis from different conceptual integration network perspectives,elucidating specific cognitive operations involved in the construction of meanings and revealing the emergence process of layered meanings in recent internet buzzwords over the past four years.
基金by 2023 Research Topics of Hubei Education Science Planning(2023GB119)Provincial Teaching Reform Research Program for Undergraduate Colleges and Universities in Hubei in 2023(2023584)Pilot Curriculum Reform Project of College of Science and Technology of China Three Gorges University in 2023.
文摘In the new era of building a socialist modernization country with the goal of promoting high-quality development,we deeply analyze the knowledge system of the Introduction to Architecture course.This analysis is based on the cross-disciplinary specialties of local applied universities and the orientation of prioritizing employment and integrating industry and education.We propose the teaching reform of“theory-practice alternation”which is adapted to the current times and societal needs.Finally,we comprehensively summarize the effectiveness of curriculum construction,in order to provide theoretical references for the implementation of fostering character and civic virtue and deepening the reform of collaborative education mechanisms.
基金2023 General Project of Philosophy and Social Science Research in Universities of Jiangsu Province“Exploration and Practice of Mixed Teaching Model Oriented by Curriculum Ideology and Politics in the Course of Probability Theory and Mathematical Statistics”(2023SJYB1499)。
文摘With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses in higher education for science and engineering majors and economics and management majors.Its critical role in cultivating students’thinking skills and improving their problem-solving skills is self-evident.Course ideological and political education construction is an important link in college talent training work.Combining ideological and political education with course teaching can help students establish correct value concepts and play a certain role in improving their comprehensive ability and quality.At present,the construction of ideological and political education in the Probability Theory and Mathematical Statistics course still faces some problems,mainly manifested in the lack of attention paid by teachers to course ideological and political education,insufficient exploitation of ideological and political elements,and the simplification of ideological and political education implementation methods.In order to comprehensively deepen the construction of course ideological and political education in line with the actual needs of Probability Theory and Mathematical Statistics course teaching,we should strengthen the construction of teacher teams,improve teachers’ability to carry out course ideological and political education,integrate educational resources,develop educational resources for ideological and political education,and innovate teaching methods to improve the overall effect of ideological and political education integration.
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金Supported by Fundación Progreso y Salud,No.AP-0306-2022-C3-F2.
文摘BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chronic diseases and complex patients require comprehensive management strategies to reduce healthcare burdens and improve patient outcomes.If proven effective,this pilot model has the potential to be replicated in other healthcare settings to enhance the management of chronic multimorbid patients.AIM To evaluate the effectiveness of the high complexity unit(HCU)in managing chronic multimorbid patients through a multidisciplinary care model and to compare it with standard hospital care.METHODS The study employed a descriptive longitudinal approach,analyzing data from the Basic Minimum Data Set(BMDS)to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.RESULTS The study employed a descriptive longitudinal approach,analyzing data from the BMDS to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.CONCLUSION This study demonstrates the effectiveness of the HCU in managing patients with complex chronic diseases through a multidisciplinary approach.The coordinated care provided by the HCU results in improved patient outcomes,reduced unnecessary hospitalizations,and better management of patient complexity.The superiority of the HCU compared to standard care is evident in key outcomes such as fewer readmissions and higher patient satisfaction,reinforcing its value as a model of care to be replicated.
基金Supported by National Natural Science Foundation of China,No.82174461Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0201-22Technology Innovation Project of China Academy of Chinese Medical Sciences,No.CI2021A01811.
文摘BACKGROUND Patients with BRAF V600E mutant metastatic colorectal cancer(mCRC)have a low incidence rate,poor biological activity,suboptimal response to conventional treatments,and a poor prognosis.In the previous cohort study on mCRC conducted by our team,it was observed that integrated Chinese and Western medicine treatment could significantly prolong the overall survival(OS)of patients with colorectal cancer.Therefore,we further explored the survival benefits in the population with BRAF V600E mutant mCRC.AIM To evaluate the efficacy of integrated Chinese and Western medicine in the treatment of BRAF V600E mutant metastatic colorectal cancer.METHODS A cohort study was conducted on patients with BRAF V600E mutant metastatic colorectal cancer admitted to Xiyuan Hospital of China Academy of Chinese Medical Sciences and Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region from January 2016 to December 2022.The patients were divided into two cohorts.RESULTS A total of 34 cases were included,with 23 in Chinese-Western medicine cohort(cohort A)and 11 in Western medicine cohort(cohort B).The median overall survival was 19.9 months in cohort A and 14.2 months in cohort B,with a statistically significant difference(P=0.038,hazard ratio=0.46).The 1-3-year survival rates were 95.65%(22/23),39.13%(9/23),and 26.09%(6/23)in cohort A,and 63.64%(7/11),18.18%(2/11),and 9.09%(1/11)in cohort B,respectively.Subgroup analysis showed statistically significant differences in median OS between the two cohorts in the right colon,liver metastasis,chemotherapy,and first-line treatment subgroups(P<0.05).CONCLUSION Integrated Chinese and Western medicine can prolong the survival and reduce the risk of death in patients with BRAF V600E mutant metastatic colorectal cancer,with more pronounced benefits observed in patients with right colon involvement,liver metastasis,combined chemotherapy,and first-line treatment.
基金supported by the National Natural Science Foundation of China(Grant No.82270892)Natural Science Foundation of Hubei Province(Grant No.2022CFB287)+2 种基金Xianning City Science and Technology Plan Project(Grant No.2022ZRKX052)School projects of Hubei University of Science and Technology(Grant No.2022T01,2021WG05,2021TNB01)Hubei University of Science and Technology School-level Fund(Grant No.BK202122).
文摘Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.
基金supported by the National Natural Science Foundation of China(Grant Nos.32172419,32372555,32121003,32425005,32072407,and 32272033)the National Key Research and Development Program of China(Grant No.2021YFA1300702)the Sichuan Science and Technology Program,China(Grant Nos.2023NSFSC0005,2023NSFSC1996,2024NSFSC0322,2024YFNH0014,2022NSFSC1755,2022-NSFSC1650,2022NSFSC0156,and 2022NSFSC0166).
文摘The application of fungicides is an effective strategy for controlling plant diseases.Among these agents,plant-derived antifungal metabolites are particularly promising due to their eco-friendly and sustainable nature.Plant secondary metabolites typically exhibit broad-spectrum antifungal activity without selective toxicity against pathogens.However,only a small fraction of antifungal metabolites have been identified from the tens of thousands of known plant secondary metabolites.In this study,we conducted a metabolomic analysis on both blast-resistant(Digu)and-susceptible(Lijiangxintuanheigu)rice varieties to uncover novel metabolites that enhance blast resistance.We found that 24 and 48 h post-inoculation with Magnaporthe oryzae were critical time points for metabolomic profiling,based on the infected status of M.oryzae in rice and the observed differences in shikimate accumulation between the two varieties.Following metabolomic analysis,we identified nine flavonoids that were differentially accumulated and are considered potential candidates for disease control.Among these,apigenin-7-glucoside,rhamnetin,and spireoside were found to be effective in controlling blast disease,with spireoside demonstrating the most pronounced efficacy.We discovered that spireoside controlled blast disease by inhibiting both spore germination and appressorium formation in M.oryzae,primarily through disrupting cell membrane integrity.However,spireoside did not induce rice immunity.Furthermore,spireoside was also effective in controlling sheath blight disease.Thus,spireoside shows considerable promise as a candidate for the development of a fungicide for controlling plant diseases.
文摘BACKGROUND Patients with depression following coronary heart disease often exhibit insufficient psychological resilience and self-care abilities;therefore,emphasis must be placed on nursing interventions.AIM To analyze the application value of problem-oriented education combined with nursing interventions based on the Snyder hope theory model in depressed patients after percutaneous coronary intervention(PCI).METHODS This study included 150 patients diagnosed with PCI postoperative depression because of coronary heart disease between February 2022 and February 2024.Participants were divided into two groups:A control group(n=75)receiving problem-oriented education and an observation group(n=75)receiving combined nursing interventions based on the Snyder hope theory model.Depression status,psychological resilience,self-care ability,and quality of life were compared between the two groups.RESULTS Before nursing interventions,there were no significant differences between the two groups(P>0.05).After the interventions,depression scores decreased while psychological resilience,self-care ability,and quality of life scores increased significantly in the observation group compared to that in the control group,with statistically significant differences noted(P<0.05).This combined approach can enhance psychological resilience,improve self-care abilities,and elevate the overall quality of life,warranting further promotion in clinical practice.CONCLUSION Combination of problem-oriented education and nursing interventions based on the Snyder hope theory model effectively alleviates depression in patients following PCI for coronary heart disease.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
基金Supported by the Coordination of Improvement of Higher Education Personnel(CAPES)and National Council for Scientific and Technological Development(CNPq),No.311427/2023-5.
文摘The international scientific literature presents still incipient results regarding the management of cancer symptom clusters by oncology nursing,especially in pediatric oncology.This is a promising field of investigation for clinical nurses and researchers,and when it is subsidized by medium-range theories,they co-rroborate the diagnoses and interventions of nursing in oncology,enhancing the science of nursing care.This minireview article aims to discuss the utilizing the hospital clowns as a complementary therapy,to enhance quality of life and reduce stress and fatigue in pediatric cancer patients.Overall,the evidence presented so far pointed out that complementary therapy might help improve the quality of life of pediatric cancer patients,and that complementary therapy usage should be part of a health comprehensive care model,delivering therapeutic approaches that might enhance the mind-body during a pediatric cancer patients’life span.The results of scientific investigations by nurses,particularly those linked to the basic sciences,play a critical role in advancing personalized care in pediatric integrative oncology.
基金Ministry of Education,Center for Scientific Research and Development of Higher Education Institutions“Innovative Application of Virtual Simulation Technology in Vocational Education Teaching”Special Project,Project No.ZJXF2022110.
文摘This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stability analysis.Unlike traditional probabilistic techniques,this approach utilizes a least squares support vector machine(LSSVM)optimized with a grey wolf optimizer(GWO)and K-fold cross-validation(CV)to approximate the limit-statefunction,thus reducing computational complexity.The novelty of this work lies in its application to one-dimensional(1D),two-dimensional(2D),and three-dimensional(3D)slope models,demonstrating its versatility andhigh precision.The proposed method consistently achieves error margins within 3%of Monte Carlo simulation(MCS)results,while substantially reducing computation time,particularly for 2D and 3D models.This makes theapproach highly practical for real-world engineering applications.Furthermore,by applying fuzzy mathematics tohandle uncertainties in geotechnical properties,the method offers a more realistic and comprehensive understandingof slope stability.As water is the main factor influencing the stability of slopes,this aspect is investigatedby calculating the phreatic line after the change in water level.Relevant examples are used to show that the failureprobability of a slope under water wading condition can increase by more than 20%(increase rates in 1D,2D and3D conditions being 25%,27%and 31%,respectively)compared with the natural condition.The influence ofdiverse fuzzy membership functions—linear,normal,and Cauchy—on failure probability is also considered.Thisresearch not only provides a strategy for better calculation of the slope failure probability but also pioneers theintegration of computational intelligence,fuzzy logic and fluid-dynamics in geotechnical engineering,presentingan innovative and efficient tool for slope stability analysis.
文摘BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.