Background:Teacher burnout is a serious issue in the field of education,particularly in early childhood education,where teachers face high levels of work stress and emotional labor,leading to emotional exhaustion and ...Background:Teacher burnout is a serious issue in the field of education,particularly in early childhood education,where teachers face high levels of work stress and emotional labor,leading to emotional exhaustion and job burnout.However,past research has not sufficiently explored the mechanisms of social skills,empathy,and mindfulness in mitigating teacher burnout.Therefore,this study aims to investigate the relationship between preschool teachers’social skills,empathy,and mindfulness with job burnout,in order to provide theoretical basis and practical guidance for reducing teacher burnout.Methods:This research utilized a convenience sampling approach to target preschool teachers for a questionnaire survey.A total of 1109 questionnaires were collected.To ensure the quality of the data,we excluded questionnaires that were not carefully filled out in terms of lie scale questions,those with abnormal demographic variables,and outliers identified based on response time.Ultimately,901 valid questionnaires were obtained,achieving a valid response rate of 81.2%.Participants’levels of social skills,empathy,mindfulness,and job burnout were assessed using the Social Skills Scale(SKS),Empathy Scale(Measure of Empathy,ME),Mindful Attention Awareness Scale(MAAS),and the Maslach Burnout Inventory-Educators Survey(MBI-ES),respectively.Data analysis was conducted using SPSS.Results:After controlling for gender,age,teaching experience,educational level,grade taught,and location of the kindergarten,the study found:(1)There is a negative correlation between preschool teachers’social skills and the level of job burnout(r=−0.238);(2)Empathy has a dual-track effect on job burnout,where cognitive empathy negatively affects job burnout(r=−0.245),while emotional empathy has a positive effect(r=0.045);(3)Cognitive empathy partially mediates the relationship between social skills and job burnout(β=−0.124);(4)Mindfulness significantly impacts social skills,cognitive empathy,and job burnout(r=0.278;r=0.286;r=−0.539),and plays a moderating role in the mediation model(β=0.003;β=−0.023).Conclusion:These findings provide theoretical support for the development of burnout prevention and intervention strategies targeted at preschool teachers.They also point out new directions for future research and potential intervention targets,suggesting that enhancing preschool teachers’social skills and cognitive empathy,as well as increasing their mindfulness level,can help them cope with work-related stress and emotional labor,thereby alleviating job burnout.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
The success of teachers in professional environments has a desirable influence on their mental condition.Simply said,teachers’professional success plays a crucial role in improving their mental health.Due to the inva...The success of teachers in professional environments has a desirable influence on their mental condition.Simply said,teachers’professional success plays a crucial role in improving their mental health.Due to the invaluable role of professional success in teachers’mental health,personal and professional variables helping teachers succeed in their profession need to be uncovered.While the role of teachers’personal qualities has been well researched,the function of professional variables has remained unknown.To address the existing gap,the current investigation measured the role of two professional variables,namely job satisfaction and loving pedagogy,in Chinese EFL teachers’professional success.To do this,three validated scales were provided to 1591 Chinese EFL teachers.Participants’answers to the questionnaires were analyzed using the Spearman correlation test and structural equation modeling.The data analysis demonstrated a strong,positive link between the variables.Moreover,loving pedagogy was found to be the positive,strong predictor of Chinese EFL teachers’job satisfaction and professional success.The findings of the current inquiry may help educational administrators enhance their instructors’professional success,which in turn promotes their mental and psychological conditions at work.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Background:Though the COVID-19 pandemic recedes,and our society gradually returns to normal,Chinese people’s work and lifestyles are still influenced by the“pandemic aftermath”.In the post-pandemic era,employees ma...Background:Though the COVID-19 pandemic recedes,and our society gradually returns to normal,Chinese people’s work and lifestyles are still influenced by the“pandemic aftermath”.In the post-pandemic era,employees may feel uncertainty at work due to the changed organizational operations and management and perceive the external environment to be more dynamic.Both these perceptions may increase employees’negative emotions and contribute to conflicts between work and life.Drawing from the ego depletion theory,this study aimed to examine the impact of job insecurity during the post-pandemic era on employees’work-life conflicts,and the mediating effect of workplace anxiety in this relationship.Besides,this study also considered the uncertainty of the external macro environment as a boundary condition on the direct and indirect relationship between job insecurity and work-life conflicts.Methods:A two-wave questionnaire survey was conducted from October to December 2023 to collect data.MBA students and graduates from business school with full-time jobs are invited to report their perception of job insecurity,work anxiety,perceived environment uncertainty,and work-life conflict.This resulted in 253 valid responses.Data analysis was performed using the SPSS,Amos,and PROCESS.Results:The results showed that:(1)Employees’job insecurity would directly intensify the work-life conflict(B=0.275,p<0.001,95%CI[0.182,0.367]).(2)Employees’workplace anxiety mediates the relationship between job insecurity and work-life conflict(B=0.083,p<0.001,95%CI[0.047,0.130]).(3)The mediating effect of workplace anxiety between job insecurity and work-life conflict exists when perceived environmental uncertainty is high(B=0.049,95%CI[0.011,0.114]),while vanishes when perceived environmental uncertainty is low(B=0.024,95%CI[−0.005,0.068]).Conclusion:Job insecurity combined with perceived environmental uncertainty in the postpandemic era fuels employees’workplace anxiety and work-life conflicts.Post-pandemic trauma lingers,necessitating urgent attention and response.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
Objective:To evaluate the practicality of constructing multiple evaluation index systems for postgraduates in clinical medicine professional degree based on job competency.Methods:The theoretical framework of the eval...Objective:To evaluate the practicality of constructing multiple evaluation index systems for postgraduates in clinical medicine professional degree based on job competency.Methods:The theoretical framework of the evaluation index system was initially developed using expert consultation,literature review,and other methods.20 survey experts were selected and consulted using the Delphi method to screen and evaluate the weights of multiple indicators.Data was then entered into a table to evaluate the practicality of the constructed indicators.Results:The questionnaire recovery rate of the first round of expert consultation was 92.50%,and the second round was 100.00%.The comparison between the two groups showed P<0.05.The authority level of the first round was 0.817,and the second round was 0.811.In the first round of coordination,the chi-square value of the first-level indicators was 0.498,and the chi-square value of the second-level indicators was 0.628.In the second round of coordination,the chi-square value of the first-level indicators was 0.573,and the chi-square value of the second-level indicators was 0.634.The comparison between the two rounds showed P<0.05.The evaluation index system included 2 first-level indicators,5 second-level indicators,and 31 third-level indicators.Conclusion:Constructing an evaluation index system based on job competency is highly scientific,with a reasonable construction process and high practical value.展开更多
This study aimed to examine the relationship between junior high school novice English teachers’emotion regulation and job burnout.To achieve this purpose,a survey consisting of various scales was administered to 133...This study aimed to examine the relationship between junior high school novice English teachers’emotion regulation and job burnout.To achieve this purpose,a survey consisting of various scales was administered to 133 primary school teachers selected from Yunnan Province in China.Statistical analyses revealed gender differences in job burnout and emotion regulation among these teachers and highlighted the association between these two variables.The findings established that male novice English teachers in junior schools generally experience lower levels of job burnout and possess better emotion regulation skills compared to their female counterparts.Additionally,a strong negative correlation was identified between job burnout and emotional regulation skills,indicating that the stronger the emotional regulation skills,the less likely novice English teachers are to experience job burnout.The study further emphasized caution in the use of cognitive reappraisal as an emotion regulation strategy,as it may have an adverse effect on mitigating job burnout.This study concluded with recommendations for providing junior high school novice English teachers with opportunities to develop and enhance their emotion regulation skills to reduce job burnout effectively.展开更多
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo...To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.展开更多
Students in higher vocational colleges are faced with difficult problems such as slow employment,which highlights the dislocation between education and the market.This study surveyed thousands of students and hundreds...Students in higher vocational colleges are faced with difficult problems such as slow employment,which highlights the dislocation between education and the market.This study surveyed thousands of students and hundreds of enterprises,and put forward docking strategies.The analysis shows that the mismatch between skills adaptation and literacy is the main cause of slow employment.To this end,research and design training programs,including curriculum restructuring,school-enterprise cooperation practice platforms,and employment-oriented quality improvement plans are imperative.At the same time,we will develop teaching modules for career planning to enhance competitiveness and ensure that the content is synchronized with industry standards.After the implementation,the employment rate of students increased by 15%within six months,the degree of interconnection increased by 20%,and the degree of enterprise recognition increased by 25%.The research effectively promotes the docking of higher vocational education with the market,and has far-reaching significance for easing slow employment.展开更多
基金National Education Science“Thirteenth Five-Year Plan”Project(Research on the Mindfulness Integrated Prevention Model of Preschool Teachers’Burnout),Grant No.BBA190027.
文摘Background:Teacher burnout is a serious issue in the field of education,particularly in early childhood education,where teachers face high levels of work stress and emotional labor,leading to emotional exhaustion and job burnout.However,past research has not sufficiently explored the mechanisms of social skills,empathy,and mindfulness in mitigating teacher burnout.Therefore,this study aims to investigate the relationship between preschool teachers’social skills,empathy,and mindfulness with job burnout,in order to provide theoretical basis and practical guidance for reducing teacher burnout.Methods:This research utilized a convenience sampling approach to target preschool teachers for a questionnaire survey.A total of 1109 questionnaires were collected.To ensure the quality of the data,we excluded questionnaires that were not carefully filled out in terms of lie scale questions,those with abnormal demographic variables,and outliers identified based on response time.Ultimately,901 valid questionnaires were obtained,achieving a valid response rate of 81.2%.Participants’levels of social skills,empathy,mindfulness,and job burnout were assessed using the Social Skills Scale(SKS),Empathy Scale(Measure of Empathy,ME),Mindful Attention Awareness Scale(MAAS),and the Maslach Burnout Inventory-Educators Survey(MBI-ES),respectively.Data analysis was conducted using SPSS.Results:After controlling for gender,age,teaching experience,educational level,grade taught,and location of the kindergarten,the study found:(1)There is a negative correlation between preschool teachers’social skills and the level of job burnout(r=−0.238);(2)Empathy has a dual-track effect on job burnout,where cognitive empathy negatively affects job burnout(r=−0.245),while emotional empathy has a positive effect(r=0.045);(3)Cognitive empathy partially mediates the relationship between social skills and job burnout(β=−0.124);(4)Mindfulness significantly impacts social skills,cognitive empathy,and job burnout(r=0.278;r=0.286;r=−0.539),and plays a moderating role in the mediation model(β=0.003;β=−0.023).Conclusion:These findings provide theoretical support for the development of burnout prevention and intervention strategies targeted at preschool teachers.They also point out new directions for future research and potential intervention targets,suggesting that enhancing preschool teachers’social skills and cognitive empathy,as well as increasing their mindfulness level,can help them cope with work-related stress and emotional labor,thereby alleviating job burnout.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金sponsored by the Research Project of Jiangsu Social Science Fund Project,entitled“Research on Irrational Expression of Crisis Discourse”(Grant No.21YYD001)Basic Foreign Language Education Research Project of Changshu Institute of Technology,entitled“A Study on the Regulation Mechanism of Professional Happiness of Foreign Language Teachers in Primary and Secondary Schools from the Perspective of Positive Psychology”(Grant No.2022cslgwgy008).
文摘The success of teachers in professional environments has a desirable influence on their mental condition.Simply said,teachers’professional success plays a crucial role in improving their mental health.Due to the invaluable role of professional success in teachers’mental health,personal and professional variables helping teachers succeed in their profession need to be uncovered.While the role of teachers’personal qualities has been well researched,the function of professional variables has remained unknown.To address the existing gap,the current investigation measured the role of two professional variables,namely job satisfaction and loving pedagogy,in Chinese EFL teachers’professional success.To do this,three validated scales were provided to 1591 Chinese EFL teachers.Participants’answers to the questionnaires were analyzed using the Spearman correlation test and structural equation modeling.The data analysis demonstrated a strong,positive link between the variables.Moreover,loving pedagogy was found to be the positive,strong predictor of Chinese EFL teachers’job satisfaction and professional success.The findings of the current inquiry may help educational administrators enhance their instructors’professional success,which in turn promotes their mental and psychological conditions at work.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
文摘Background:Though the COVID-19 pandemic recedes,and our society gradually returns to normal,Chinese people’s work and lifestyles are still influenced by the“pandemic aftermath”.In the post-pandemic era,employees may feel uncertainty at work due to the changed organizational operations and management and perceive the external environment to be more dynamic.Both these perceptions may increase employees’negative emotions and contribute to conflicts between work and life.Drawing from the ego depletion theory,this study aimed to examine the impact of job insecurity during the post-pandemic era on employees’work-life conflicts,and the mediating effect of workplace anxiety in this relationship.Besides,this study also considered the uncertainty of the external macro environment as a boundary condition on the direct and indirect relationship between job insecurity and work-life conflicts.Methods:A two-wave questionnaire survey was conducted from October to December 2023 to collect data.MBA students and graduates from business school with full-time jobs are invited to report their perception of job insecurity,work anxiety,perceived environment uncertainty,and work-life conflict.This resulted in 253 valid responses.Data analysis was performed using the SPSS,Amos,and PROCESS.Results:The results showed that:(1)Employees’job insecurity would directly intensify the work-life conflict(B=0.275,p<0.001,95%CI[0.182,0.367]).(2)Employees’workplace anxiety mediates the relationship between job insecurity and work-life conflict(B=0.083,p<0.001,95%CI[0.047,0.130]).(3)The mediating effect of workplace anxiety between job insecurity and work-life conflict exists when perceived environmental uncertainty is high(B=0.049,95%CI[0.011,0.114]),while vanishes when perceived environmental uncertainty is low(B=0.024,95%CI[−0.005,0.068]).Conclusion:Job insecurity combined with perceived environmental uncertainty in the postpandemic era fuels employees’workplace anxiety and work-life conflicts.Post-pandemic trauma lingers,necessitating urgent attention and response.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金Graduate Education and Teaching Reform Project of Baotou Medical College in 2023“Research on the Quality Evaluation System for the Cultivation of Postgraduates in Clinical Medicine Professional Degree”(A-YJSJG202304)。
文摘Objective:To evaluate the practicality of constructing multiple evaluation index systems for postgraduates in clinical medicine professional degree based on job competency.Methods:The theoretical framework of the evaluation index system was initially developed using expert consultation,literature review,and other methods.20 survey experts were selected and consulted using the Delphi method to screen and evaluate the weights of multiple indicators.Data was then entered into a table to evaluate the practicality of the constructed indicators.Results:The questionnaire recovery rate of the first round of expert consultation was 92.50%,and the second round was 100.00%.The comparison between the two groups showed P<0.05.The authority level of the first round was 0.817,and the second round was 0.811.In the first round of coordination,the chi-square value of the first-level indicators was 0.498,and the chi-square value of the second-level indicators was 0.628.In the second round of coordination,the chi-square value of the first-level indicators was 0.573,and the chi-square value of the second-level indicators was 0.634.The comparison between the two rounds showed P<0.05.The evaluation index system included 2 first-level indicators,5 second-level indicators,and 31 third-level indicators.Conclusion:Constructing an evaluation index system based on job competency is highly scientific,with a reasonable construction process and high practical value.
文摘This study aimed to examine the relationship between junior high school novice English teachers’emotion regulation and job burnout.To achieve this purpose,a survey consisting of various scales was administered to 133 primary school teachers selected from Yunnan Province in China.Statistical analyses revealed gender differences in job burnout and emotion regulation among these teachers and highlighted the association between these two variables.The findings established that male novice English teachers in junior schools generally experience lower levels of job burnout and possess better emotion regulation skills compared to their female counterparts.Additionally,a strong negative correlation was identified between job burnout and emotional regulation skills,indicating that the stronger the emotional regulation skills,the less likely novice English teachers are to experience job burnout.The study further emphasized caution in the use of cognitive reappraisal as an emotion regulation strategy,as it may have an adverse effect on mitigating job burnout.This study concluded with recommendations for providing junior high school novice English teachers with opportunities to develop and enhance their emotion regulation skills to reduce job burnout effectively.
基金Shaanxi Provincial Key Research and Development Project(2023YBGY095)and Shaanxi Provincial Qin Chuangyuan"Scientist+Engineer"project(2023KXJ247)Fund support.
文摘To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.
文摘Students in higher vocational colleges are faced with difficult problems such as slow employment,which highlights the dislocation between education and the market.This study surveyed thousands of students and hundreds of enterprises,and put forward docking strategies.The analysis shows that the mismatch between skills adaptation and literacy is the main cause of slow employment.To this end,research and design training programs,including curriculum restructuring,school-enterprise cooperation practice platforms,and employment-oriented quality improvement plans are imperative.At the same time,we will develop teaching modules for career planning to enhance competitiveness and ensure that the content is synchronized with industry standards.After the implementation,the employment rate of students increased by 15%within six months,the degree of interconnection increased by 20%,and the degree of enterprise recognition increased by 25%.The research effectively promotes the docking of higher vocational education with the market,and has far-reaching significance for easing slow employment.