U-shaped sacral fractures are rare and often difficult to diagnose primarily due to the difficulty in obtaining adequate imaging and the severe associated injuries. These fractures are highly unstable and frequently c...U-shaped sacral fractures are rare and often difficult to diagnose primarily due to the difficulty in obtaining adequate imaging and the severe associated injuries. These fractures are highly unstable and frequently cause neurological deficits. The majority of surgeons have limited experience in management of U-shaped sacral fractures. No standard treatment protocol for U-shaped sacral fractures has been available till now. This study aimed to examine the management of U-shaped sacral fractures and the early outcomes. Clinical data of 15 consecutive patients with U-shaped sacral fracture who were admitted to our trauma center between 2009 and 2014 were retrospectively analyzed. Demographics, fracture classification, mechanism of injury and operative treatment and deformity angle were assessed. All the patients were treated with lumbopelvic fixation or (and) sacral decompression. EQ-5d score was applied to evaluate the patients' quality of life. Of the 15 consecutive patients with U-shaped sacral fracture, the mean age was 28.8 years (range: 15-55 years) at the time of injury. There were 6 females and 9 males. The mean follow- up time was 22.7 months (range: 9-47 months) and mean full weight-bearing time was 9.9 weeks (range: 8-14 weeks). Ten patients received lumbopelvic fixation and sacral decompression, one lombosacral fixation, and 4 merely sacral decompression due to delayed diagnosis or surgery. The post-operation deformity angle (mean 27.87°, and range: 8°-90°) of the sacrum was smaller than that pre-operation (mean 35.67; range: 15-90) with no significance difference noted. At the latest follow-up, all patients obtained neurological recovery with different extents. Visual analogue score (VAS) was reduced from preoperative 7.07 (range: 5-9) to postoperetive 1.93 (range: 1-3). All patients could walk without any aid after treatment. Eight patients were able to care for themselves and undertook some daily activities. Five patients had returned to work full time. In conclusion, lumbopelvic fixation is an effective method for stabilization of U-shaped sacral fractures with fewer complications developed. Effective reduction and firm fixation are the prerequisite of early mobilization and neurological recovery. Sacral decompression effectively promotes neurological recovery even in patients with old U-shaped sacral fractures.展开更多
The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zh...The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zhu Weiping, et al. and the solution for ring plates. The results evaluated in this paper are compared with those on EJMA (standards of the expansion joint manufacturers association) and of the experiment given by Li Tingxilz, et al.展开更多
U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis proce...U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis process. Numerical simulation is utilized in this work to study the hidden characteristics of the U-shaped micro-nanochannel system, and the effects of key controlling parameters(the external voltage and pressure) on the device output metrics(current, maximum values of electric field, shear stress and flow velocity) were evaluated. A large portion of current flowing through the whole system goes through the nanochannels, rather than the middle part of the microchannel, with its value increasing linearly with the increase of voltage. Due to the local ion depletion near micro-nanofluidic junction, significantly enhanced electric field(as much as 15 fold at V=1 V and P_0=0) as well as strong shear stress(leading to electrokinetic flow) is generated.With increasing external pressure, both electric field and shear stress can be increased initially(due to shortening of depletion region length), but are suppressed eventually at higher pressure due to the destruction of ion depletion layer. Insights gained from this study could be useful for designing nonlinear electrokinetic pumps and other systems.展开更多
An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and inve...An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ.cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.展开更多
The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequ...The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.展开更多
文摘U-shaped sacral fractures are rare and often difficult to diagnose primarily due to the difficulty in obtaining adequate imaging and the severe associated injuries. These fractures are highly unstable and frequently cause neurological deficits. The majority of surgeons have limited experience in management of U-shaped sacral fractures. No standard treatment protocol for U-shaped sacral fractures has been available till now. This study aimed to examine the management of U-shaped sacral fractures and the early outcomes. Clinical data of 15 consecutive patients with U-shaped sacral fracture who were admitted to our trauma center between 2009 and 2014 were retrospectively analyzed. Demographics, fracture classification, mechanism of injury and operative treatment and deformity angle were assessed. All the patients were treated with lumbopelvic fixation or (and) sacral decompression. EQ-5d score was applied to evaluate the patients' quality of life. Of the 15 consecutive patients with U-shaped sacral fracture, the mean age was 28.8 years (range: 15-55 years) at the time of injury. There were 6 females and 9 males. The mean follow- up time was 22.7 months (range: 9-47 months) and mean full weight-bearing time was 9.9 weeks (range: 8-14 weeks). Ten patients received lumbopelvic fixation and sacral decompression, one lombosacral fixation, and 4 merely sacral decompression due to delayed diagnosis or surgery. The post-operation deformity angle (mean 27.87°, and range: 8°-90°) of the sacrum was smaller than that pre-operation (mean 35.67; range: 15-90) with no significance difference noted. At the latest follow-up, all patients obtained neurological recovery with different extents. Visual analogue score (VAS) was reduced from preoperative 7.07 (range: 5-9) to postoperetive 1.93 (range: 1-3). All patients could walk without any aid after treatment. Eight patients were able to care for themselves and undertook some daily activities. Five patients had returned to work full time. In conclusion, lumbopelvic fixation is an effective method for stabilization of U-shaped sacral fractures with fewer complications developed. Effective reduction and firm fixation are the prerequisite of early mobilization and neurological recovery. Sacral decompression effectively promotes neurological recovery even in patients with old U-shaped sacral fractures.
文摘The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zhu Weiping, et al. and the solution for ring plates. The results evaluated in this paper are compared with those on EJMA (standards of the expansion joint manufacturers association) and of the experiment given by Li Tingxilz, et al.
基金supported by the Intergovernmental International Science,Technology and Innovation Cooperation Key Project of the National Key R&D Programme(2016YFE0105900)the National Natural Science Foundation of China(21576130and 11372229)Kuwait Foundation for the Advancement of Sciences(Kuwait-MIT signature project,Project code:P31475EC01)
文摘U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis process. Numerical simulation is utilized in this work to study the hidden characteristics of the U-shaped micro-nanochannel system, and the effects of key controlling parameters(the external voltage and pressure) on the device output metrics(current, maximum values of electric field, shear stress and flow velocity) were evaluated. A large portion of current flowing through the whole system goes through the nanochannels, rather than the middle part of the microchannel, with its value increasing linearly with the increase of voltage. Due to the local ion depletion near micro-nanofluidic junction, significantly enhanced electric field(as much as 15 fold at V=1 V and P_0=0) as well as strong shear stress(leading to electrokinetic flow) is generated.With increasing external pressure, both electric field and shear stress can be increased initially(due to shortening of depletion region length), but are suppressed eventually at higher pressure due to the destruction of ion depletion layer. Insights gained from this study could be useful for designing nonlinear electrokinetic pumps and other systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176069 and 61376079)the Program for New Century Excellent Talents at the University of Ministry of Education of China(Grant No.NCET-11-0062)
文摘An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ.cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.
文摘The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.