Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL system...BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.展开更多
Atomic magnetometers operated in the spin-exchange relaxation-free(SERF)regime are the promising sensor to replace superconducting quantum interference devices(SQUIDs)in the biomagnetism field.The SERF magnetometer wi...Atomic magnetometers operated in the spin-exchange relaxation-free(SERF)regime are the promising sensor to replace superconducting quantum interference devices(SQUIDs)in the biomagnetism field.The SERF magnetometer with compact size and good performance is crucial to the new generation of wearable magnetoencephalography(MEG)system.In this paper,we developed a compact and closed-loop SERF magnetometer with the dimensions of 15.0×22.0×30.0 mm^(3)based on a single-beam configuration.The bandwidth of the magnetometer was extended to 675 Hz while the sensitivity was maintained at 22 f T/Hz^(1/2).A nearly 3-fold enhancement of the bandwidth was obtained in comparison with the open-loop control.The implementation of the closed-loop control also greatly improved the dynamic range,enabling the magnetometer to be robust against the disturbance of the ambient field.Moreover,the magnetometer was successfully applied for the detection of humanα-rhythm and auditory evoked fields(AEFs),which demonstrated the potential to be extended to multi-channel MEG measurements for future neuroscience studies.展开更多
In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ...This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.展开更多
The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained accor...The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.展开更多
A novel closed-loop control strategy of a silicon microgyroscope (SMG) is proposed. The SMG is sealed in metal can package in drive and sense modes and works under the air pressure of 10 Pa. Its quality factor reach...A novel closed-loop control strategy of a silicon microgyroscope (SMG) is proposed. The SMG is sealed in metal can package in drive and sense modes and works under the air pressure of 10 Pa. Its quality factor reaches greater than l0 000. Self-oscillating and closed-loop methods based on electrostatic force feedback are adopted in both measure and control circuits. Both single side driving and sensing methods are used to simplify the drive circuit. These dual channel decomposition and reconstruction closed loops are applied in sense modes. The testing results demonstrate that useful signals and guadrature signals do not interact with each other because of the decoupling of their phases. Under the condition of a scale factor of 9. 6 mV/((°) .s), in a full measurement range of±300 (°)/s, the zero bias stability reaches 28 (°)/h with a nonlinear coefficient of 400 × 10^-6 and a simulated bandwidth of more than 100 Hz. The overall performance is improved by two orders of magnitude in comparison to that at atmospheric pressure.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
Efficient recycling technology for the rapid growth of spent lithium-ion batteries(LIBs)is essential to tackle the resources and environmental crisis.Hydrometallurgical approach has attracted extensive research due to...Efficient recycling technology for the rapid growth of spent lithium-ion batteries(LIBs)is essential to tackle the resources and environmental crisis.Hydrometallurgical approach has attracted extensive research due to its potential to reduce the consumption of energy and threat to the environment.However,the simultaneous realization of green,efficient and closed-loop recycling is still challenging.Herein,we report a closed-loop and highly efficient approach to recycle lithium cobalt oxide from spent LIBs based on a choline chloride:oxalic acid(ChCl:OA)type deep eutectic solvent(DES).An ultrafast leaching process is observed at 180°C for 10 s with no observable residues.The energy barrier during leaching is calculated to be 113.9 kJ/mol.Noteworthy,the solubility of cobalt ions can be reversibly tuned by simply adding/evaporating deionized water,thus avoiding the addition of precipitant and enabling the easy recovery of the leaching solvent for realizing a closed-loop recycling process.The simultaneous realization of high efficiency,green and closed-loop process is expected to push the DES into practical application for recycling the electrodes of LIBs.展开更多
Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed...Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.展开更多
The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. T...The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.展开更多
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown co...Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.展开更多
Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis s...Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.展开更多
The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeuti...The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeutics, called bioelectronic medicines, are being developed to precisely regulate physiology and treat dysfunction using peripheral nerve stimulation. In this review, we first discuss new work using closed-loop bioelectronic medicine to treat upper limb paralysis. In contrast to open-loop bioelectronic medicines, closed-loop approaches trigger ‘on demand' peripheral nerve stimulation due to a change in function(e.g., during an upper limb movement or a change in cardiopulmonary state). We also outline our perspective on timing rules for closedloop bioelectronic stimulation, interface features for non-invasively stimulating peripheral nerves, and machine learning algorithms to recognize disease events for closed-loop stimulation control. Although there will be several challenges for this emerging field, we look forward to future bioelectronic medicines that can autonomously sense changes in the body, to provide closed-loop peripheral nerve stimulation and treat disease.展开更多
The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on de...The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the m...Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
文摘BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.
基金Project supported by Ji Hua Laboratory(Grant No.X190131TD190)the Research and Development Project for Equipment of Chinese Academy of Sciences(Grant No.YJKYYQ20210051)+1 种基金the Suzhou pilot project of basic research(Grant No.SJC2021024)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20200215)。
文摘Atomic magnetometers operated in the spin-exchange relaxation-free(SERF)regime are the promising sensor to replace superconducting quantum interference devices(SQUIDs)in the biomagnetism field.The SERF magnetometer with compact size and good performance is crucial to the new generation of wearable magnetoencephalography(MEG)system.In this paper,we developed a compact and closed-loop SERF magnetometer with the dimensions of 15.0×22.0×30.0 mm^(3)based on a single-beam configuration.The bandwidth of the magnetometer was extended to 675 Hz while the sensitivity was maintained at 22 f T/Hz^(1/2).A nearly 3-fold enhancement of the bandwidth was obtained in comparison with the open-loop control.The implementation of the closed-loop control also greatly improved the dynamic range,enabling the magnetometer to be robust against the disturbance of the ambient field.Moreover,the magnetometer was successfully applied for the detection of humanα-rhythm and auditory evoked fields(AEFs),which demonstrated the potential to be extended to multi-channel MEG measurements for future neuroscience studies.
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
基金partially supported by National Key Research and Development Program of China(2019YFC1510902)National Natural Science Foundation of China(62073104)+1 种基金Natural Science Foundation of Heilongjiang Province(LH2022F024)China Postdoctoral Science Foundation(2022M710965)。
文摘This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.
文摘The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.
基金The National High Technology Research and Development Program of China (863Program)(No.2002AA812038)the National Defense Pre-Research Support Program (No.41308050109)
文摘A novel closed-loop control strategy of a silicon microgyroscope (SMG) is proposed. The SMG is sealed in metal can package in drive and sense modes and works under the air pressure of 10 Pa. Its quality factor reaches greater than l0 000. Self-oscillating and closed-loop methods based on electrostatic force feedback are adopted in both measure and control circuits. Both single side driving and sensing methods are used to simplify the drive circuit. These dual channel decomposition and reconstruction closed loops are applied in sense modes. The testing results demonstrate that useful signals and guadrature signals do not interact with each other because of the decoupling of their phases. Under the condition of a scale factor of 9. 6 mV/((°) .s), in a full measurement range of±300 (°)/s, the zero bias stability reaches 28 (°)/h with a nonlinear coefficient of 400 × 10^-6 and a simulated bandwidth of more than 100 Hz. The overall performance is improved by two orders of magnitude in comparison to that at atmospheric pressure.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金supported by the Talented Program of Guizhou University(702759203301)the Natural Science Foundation of Guizhou Science and Technology Department(QKHJC-ZK[2021]-YB257)。
文摘Efficient recycling technology for the rapid growth of spent lithium-ion batteries(LIBs)is essential to tackle the resources and environmental crisis.Hydrometallurgical approach has attracted extensive research due to its potential to reduce the consumption of energy and threat to the environment.However,the simultaneous realization of green,efficient and closed-loop recycling is still challenging.Herein,we report a closed-loop and highly efficient approach to recycle lithium cobalt oxide from spent LIBs based on a choline chloride:oxalic acid(ChCl:OA)type deep eutectic solvent(DES).An ultrafast leaching process is observed at 180°C for 10 s with no observable residues.The energy barrier during leaching is calculated to be 113.9 kJ/mol.Noteworthy,the solubility of cobalt ions can be reversibly tuned by simply adding/evaporating deionized water,thus avoiding the addition of precipitant and enabling the easy recovery of the leaching solvent for realizing a closed-loop recycling process.The simultaneous realization of high efficiency,green and closed-loop process is expected to push the DES into practical application for recycling the electrodes of LIBs.
基金supported by grant from National Nature Science Found (30670767)
文摘Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.
基金the Important National Science & Technology Specific Projects of China (Grant No. 2011ZX05024-004)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No. JQ201115)+2 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-11-0734)the Fundamental Research Funds for the Central Universities (Grant No. 13CX05007A, 13CX05016A)the Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)
文摘The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
基金Technical Basis Projects of China's MIIT(Nos.ZQ092012B003,2012090003)
文摘Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.
文摘Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.
文摘The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeutics, called bioelectronic medicines, are being developed to precisely regulate physiology and treat dysfunction using peripheral nerve stimulation. In this review, we first discuss new work using closed-loop bioelectronic medicine to treat upper limb paralysis. In contrast to open-loop bioelectronic medicines, closed-loop approaches trigger ‘on demand' peripheral nerve stimulation due to a change in function(e.g., during an upper limb movement or a change in cardiopulmonary state). We also outline our perspective on timing rules for closedloop bioelectronic stimulation, interface features for non-invasively stimulating peripheral nerves, and machine learning algorithms to recognize disease events for closed-loop stimulation control. Although there will be several challenges for this emerging field, we look forward to future bioelectronic medicines that can autonomously sense changes in the body, to provide closed-loop peripheral nerve stimulation and treat disease.
基金Project(61404122)supported by the National Natural Science Foundation of China
文摘The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.
基金Project(2019 YFB 2004700)supported by the National Key R&D Project of ChinaProject(HTL-O-19 K 02)supported by National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,China。
文摘Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.