In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (...In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.展开更多
Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabati...Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.展开更多
We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corr...We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.展开更多
An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system...An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system is established. The cooperative controllers with saturation constraints are presented. By introducing the concepts in consensus algorithms, the cooperative information links in the controllers are described by graphs, and the corresponding Laplacian matrix is defined. The design conditions of the cooperative controllers are proposed, in the form of linear matrix inequalities. For the case of undirected information links, the controller design conditions are simplified as algebraic inequalities, which highly reduce the computation cost. The designed controllers are implemented on a distributed morphing wing platform, and experiments are carried out. Simulation and experiment results show that the controllers can make all the actuating units in the morphing wing system cooperatively achieve the desired positions, which demonstrates the effectiveness of the proposed theory.展开更多
To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,...To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.展开更多
Dense sintered bodies of proton conducting BaZrO3 (BZ) and Y-doped BaZrO3 (BZ-Y) were obtained at 1600℃ for a short sintering time of 5 hours, by the addition of NiO as a sintering promotion agent. The relative densi...Dense sintered bodies of proton conducting BaZrO3 (BZ) and Y-doped BaZrO3 (BZ-Y) were obtained at 1600℃ for a short sintering time of 5 hours, by the addition of NiO as a sintering promotion agent. The relative density and grain growth of samples, Ni-doped BaZrO3 (BZ-N) and Ni, Y co-doped BaZrO3 (BZ-NY), were increased with increasing Ni addition. The sinterability of BZ-NY was greatly improved just to add only 0.6 mol% Ni and the relative density of this sample was more than 98%, in contrast to that of 60% at most for BZ-Y without Ni addition. Electrical conductivity of BZ-NY added Ni 1.0 mol%, BaZr0.91Ni0.01Y0.08O3-α, was more than 10-3 S.cm-2 at 900℃?in a wet 1% hydrogen atmosphere, which value was 10 times higher than that of BZ-Y. In addition, the kind of electrical conduction carrier and an ionic transport number were also examined by employing various concentration cells. It was found that the proton conduction was dominant for both BZ-N and BZ-NY samples, although BZ-NY showed scarcely oxygenion conduction approximately 10% in a high temperature range higher than 800℃. From these results, as mall amount of Ni addition found to be effective for improvement of both the sinterability and the electrical conductivity.展开更多
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the m...The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.展开更多
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat...The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.展开更多
For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of i...For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and qs. An example is given to illustrate the application of the results.展开更多
文摘In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.
基金the National Natural Science Fourdation of China under Grant Nos.40375016 , 40428002 InnovationProject of the Chinese Academy of Sciences under Grant No.KZCX-SW-213.
文摘Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.
文摘We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.
基金supported by the National Natural Science Foundation of China (90605007 91016017)
文摘An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system is established. The cooperative controllers with saturation constraints are presented. By introducing the concepts in consensus algorithms, the cooperative information links in the controllers are described by graphs, and the corresponding Laplacian matrix is defined. The design conditions of the cooperative controllers are proposed, in the form of linear matrix inequalities. For the case of undirected information links, the controller design conditions are simplified as algebraic inequalities, which highly reduce the computation cost. The designed controllers are implemented on a distributed morphing wing platform, and experiments are carried out. Simulation and experiment results show that the controllers can make all the actuating units in the morphing wing system cooperatively achieve the desired positions, which demonstrates the effectiveness of the proposed theory.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.
文摘Dense sintered bodies of proton conducting BaZrO3 (BZ) and Y-doped BaZrO3 (BZ-Y) were obtained at 1600℃ for a short sintering time of 5 hours, by the addition of NiO as a sintering promotion agent. The relative density and grain growth of samples, Ni-doped BaZrO3 (BZ-N) and Ni, Y co-doped BaZrO3 (BZ-NY), were increased with increasing Ni addition. The sinterability of BZ-NY was greatly improved just to add only 0.6 mol% Ni and the relative density of this sample was more than 98%, in contrast to that of 60% at most for BZ-Y without Ni addition. Electrical conductivity of BZ-NY added Ni 1.0 mol%, BaZr0.91Ni0.01Y0.08O3-α, was more than 10-3 S.cm-2 at 900℃?in a wet 1% hydrogen atmosphere, which value was 10 times higher than that of BZ-Y. In addition, the kind of electrical conduction carrier and an ionic transport number were also examined by employing various concentration cells. It was found that the proton conduction was dominant for both BZ-N and BZ-NY samples, although BZ-NY showed scarcely oxygenion conduction approximately 10% in a high temperature range higher than 800℃. From these results, as mall amount of Ni addition found to be effective for improvement of both the sinterability and the electrical conductivity.
基金supported by the State Key Program of National Natural Science of China(Grant Nos.40233035 and 40633014)funded by one of National Basic Research Program of China(Grant No.2009CB421402)
文摘The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.
文摘The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.
文摘For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and qs. An example is given to illustrate the application of the results.