Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车...目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。展开更多
In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photo...In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.展开更多
The endoplasmic reticulum(ER)is connected to mitochondria through mitochondria-associated ER membranes(MAMs).MAMs provide a framework for crosstalk between the ER and mitochondria,playing a crucial role in regulating ...The endoplasmic reticulum(ER)is connected to mitochondria through mitochondria-associated ER membranes(MAMs).MAMs provide a framework for crosstalk between the ER and mitochondria,playing a crucial role in regulating cellular calcium balance,lipid metabolism,and cell death.Dysregulation of MAMs is involved in the development of chronic liver disease(CLD).In CLD,changes in MAMs structure and function occur due to factors such as cellular stress,inflammation,and oxidative stress,leading to abnormal interactions between mitochondria and the ER,resulting in liver cell injury,fibrosis,and impaired liver function.Traditional Chinese medicine has shown some research progress in regulating MAMs signaling and treating CLD.This paper reviews the literature on the association between mitochondria and the ER,as well as the intervention of traditional Chinese medicine in regulating CLD.展开更多
Estrogen receptor(ER) is a vital biomarker in the development and development of breast cancer, and its status has great clinical value in clinical treatment strategy, endocrine therapy efficacy prediction, and breast...Estrogen receptor(ER) is a vital biomarker in the development and development of breast cancer, and its status has great clinical value in clinical treatment strategy, endocrine therapy efficacy prediction, and breast cancer prognosis. By specifically combining <sup>18</sup>F-FES with ER, <sup>18</sup>F-FES PET/CT imaging uses standard uptake value(SUV) to semi-quantitatively reflect the distribution of ER and its biological activity in patients, and assesses the expression of ER in breast cancer patients about primary and metastases before or after treatment, to provide a basis for personalized treatment of breast cancer. In this review, we will review the imaging principles of a new ER detection method <sup>18</sup>F-FES PET/CT, and the research progress in the clinical application of breast cancer, and compare its diagnostic and treatment value with non-specific tumor imaging <sup>18</sup>F-FDG PET/CT in breast cancer.展开更多
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
文摘目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。
基金National Natural Science Foundation of China(62074056)Fundamental Research Funds for the Central Universities。
文摘In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.
基金Supported by the National Natural Science Foundation of China,No.82204755,and No.81960751the Guangxi Natural Science Foundation Youth Project,No.2023GXNSFBA026274+1 种基金the Guangxi University of Traditional Chinese Medicine School-level Project Youth Fund,No.2022QN008Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine Research Project,No.2022MS008 and No.2022QJ001.
文摘The endoplasmic reticulum(ER)is connected to mitochondria through mitochondria-associated ER membranes(MAMs).MAMs provide a framework for crosstalk between the ER and mitochondria,playing a crucial role in regulating cellular calcium balance,lipid metabolism,and cell death.Dysregulation of MAMs is involved in the development of chronic liver disease(CLD).In CLD,changes in MAMs structure and function occur due to factors such as cellular stress,inflammation,and oxidative stress,leading to abnormal interactions between mitochondria and the ER,resulting in liver cell injury,fibrosis,and impaired liver function.Traditional Chinese medicine has shown some research progress in regulating MAMs signaling and treating CLD.This paper reviews the literature on the association between mitochondria and the ER,as well as the intervention of traditional Chinese medicine in regulating CLD.
文摘Estrogen receptor(ER) is a vital biomarker in the development and development of breast cancer, and its status has great clinical value in clinical treatment strategy, endocrine therapy efficacy prediction, and breast cancer prognosis. By specifically combining <sup>18</sup>F-FES with ER, <sup>18</sup>F-FES PET/CT imaging uses standard uptake value(SUV) to semi-quantitatively reflect the distribution of ER and its biological activity in patients, and assesses the expression of ER in breast cancer patients about primary and metastases before or after treatment, to provide a basis for personalized treatment of breast cancer. In this review, we will review the imaging principles of a new ER detection method <sup>18</sup>F-FES PET/CT, and the research progress in the clinical application of breast cancer, and compare its diagnostic and treatment value with non-specific tumor imaging <sup>18</sup>F-FDG PET/CT in breast cancer.