BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery ...BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.展开更多
Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a m...Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper over...In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper overviews the methods for extreme event attribution(EEA)and discusses the new insights that EEA provides for infrastructure adaptation.We found that EEA can inform stakeholders about current climate risk,support vulnerability-based and hazard-based adaptations,assist in the development of cost-effective adaptation strategies,and enhance justice and equity in the allocation of adaptation resources.As engineering practice shifts from a retrospective approach to a proactive,forward-looking risk management strategy,EEA can be used together with climate projections to enhance the comprehensiveness of decision making,including planning and preparing for un-precedented extreme events.Additionally,attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed,and future changes in the probability of extreme events are evaluated.Given large uncertainties inherent in event attribution and climate projections,future research should examine the sensitivity of engineering design to climate model uncertainties,and adapt engineering practice,including building codes,to uncertain future conditions.While this study focuses on adaptation planning,EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.展开更多
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model...Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.展开更多
BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not be...BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association between prediabetes and MACCE in AF patients.Therefore,there is a need for further research to actively screen and manage prediabetes in AF to prevent MACCE.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)increases cardiovascular disease(CVD)risk irrespective of other risk factors.However,large-scale cardiovascular sex and race differences are poorly understood.AIM To ...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)increases cardiovascular disease(CVD)risk irrespective of other risk factors.However,large-scale cardiovascular sex and race differences are poorly understood.AIM To investigate the relationship between NAFLD and major cardiovascular and cerebrovascular events(MACCE)in subgroups using a nationally representative United States inpatient sample.METHODS We examined National Inpatient Sample(2019)to identify adult hospitalizations with NAFLD by age,sex,and race using ICD-10-CM codes.Clinical and demographic characteristics,comorbidities,and MACCE-related mortality,acute myocardial infarction(AMI),cardiac arrest,and stroke were compared in NAFLD cohorts by sex and race.Multivariable regression analyses were adjusted for sociodemographic characteristics,hospitalization features,and comorbidities.RESULTS We examined 409130 hospitalizations[median 55(IQR 43-66)years]with NFALD.NAFLD was more common in females(1.2%),Hispanics(2%),and Native Americans(1.9%)than whites.Females often reported non-elective admissions,Medicare enrolment,the median age of 55(IQR 42-67),and poor income.Females had higher obesity and uncomplicated diabetes but lower hypertension,hyperlipidemia,and complicated diabetes than males.Hispanics had a median age of 48(IQR 37-60),were Medicaid enrollees,and had non-elective admissions.Hispanics had greater diabetes and obesity rates than whites but lower hypertension and hyperlipidemia.MACCE,all-cause mortality,AMI,cardiac arrest,and stroke were all greater in elderly individuals(P<0.001).MACCE,AMI,and cardiac arrest were more common in men(P<0.001).Native Americans(aOR 1.64)and Asian Pacific Islanders(aOR 1.18)had higher all-cause death risks than whites.CONCLUSION Increasing age and male sex link NAFLD with adverse MACCE outcomes;Native Americans and Asian Pacific Islanders face higher mortality,highlighting a need for tailored interventions and care.展开更多
The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characteriz...The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.展开更多
BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However...BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.展开更多
BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress...BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center.We developed a predictive model for post-LT MACE(defined as a composite outcome of stroke,new-onset heart failure,severe arrhythmia,and myocardial infarction)using the extreme gradient boosting(XGBoost)machine learning model.We addressed missing data(below 20%)for relevant variables using the k-nearest neighbor imputation method,calculating the mean from the ten nearest neighbors for each case.The modeling dataset included 83 features,encompassing patient and laboratory data,cirrhosis complications,and pre-LT cardiac assessments.Model performance was assessed using the area under the receiver operating characteristic curve(AUROC).We also employed Shapley additive explanations(SHAP)to interpret feature impacts.The dataset was split into training(75%)and testing(25%)sets.Calibration was evaluated using the Brier score.We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting.Scikit-learn and SHAP in Python 3 were used for all analyses.The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.RESULTS Of the 537 included patients,23(4.46%)developed in-hospital MACE,with a mean age at transplantation of 52.9 years.The majority,66.1%,were male.The XGBoost model achieved an impressive AUROC of 0.89 during the training stage.This model exhibited accuracy,precision,recall,and F1-score values of 0.84,0.85,0.80,and 0.79,respectively.Calibration,as assessed by the Brier score,indicated excellent model calibration with a score of 0.07.Furthermore,SHAP values highlighted the significance of certain variables in predicting postoperative MACE,with negative noninvasive cardiac stress testing,use of nonselective beta-blockers,direct bilirubin levels,blood type O,and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level.These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE,making it a valuable tool for clinical practice.CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE,using both cardiovascular and hepatic variables.The model demonstrated impressive performance,aligning with literature findings,and exhibited excellent calibration.Notably,our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data,reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.展开更多
Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected be...Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected beach is landward and opposite to the Jinmeng Bay Beach.Nowadays,with climate changes,frequent heavy rainfalls in Hebei Province rise flood hazards at the Tanghe Estuary.Under this circumstance,potential influences on the projected beach of a flood are investigated for sustainable managements.A multi-coupled model is established and based on the data from field observations,where wave model,flow model and multifraction sediment transport model are included.In addition,the impacts on the projected beach of different components in extreme events are discussed,including the spring tides,storm winds,storm waves,and sediment inputs.The numerical results indicate the following result.(1)Artificial islands protect the coasts from erosion by obstructing landward waves,but rise the deposition risks along the target shore.(2)Flood brings massive sediment inputs and leads to scours at the estuary,but the currents with high sediment concentration contribute to the accretions along the target shore.(3)The projected beach mitigates flood actions and reduces the maximum mean sediment concentration along the target shore by 20%.(4)The storm winds restrict the flood and decrease the maximum mean sediment concentration by 21%.With the combined actions of storm winds and waves,the maximum value further declines by 38%.(5)A quadratic polynomial relationship between the deposition depths and the maximum sediment inputs with flood is established for estimations on the potential morphological changes after the flood process in extreme events.For the uncertainty of estuarine floods,continuous monitoring on local hydrodynamic variations and sediment characteristics at Tanghe Estuary is necessary.展开更多
The Jenkyns Event,more widely known as the Toarcian Oceanic Anoxic Event(T-OAE),is marked by globally distributed negative carbon-isotope excursions,widespread oxygen depletion,and large-scale organic carbon burial,wh...The Jenkyns Event,more widely known as the Toarcian Oceanic Anoxic Event(T-OAE),is marked by globally distributed negative carbon-isotope excursions,widespread oxygen depletion,and large-scale organic carbon burial,which indicate major climate/environmental perturbations in Earth's surface systems during the Early Jurassic.Although extensive research has been conducted in European continental settings,particularly in the western peri-Tethys regions,the impacts of this event beyond Europe remains largely unexplored.Here,a multiapproach study including investigations into the sporepollen assemblages,pyrite framboids,clay minerals,total organic carbon(TOC)levels,and organic carbon isotope(δ13Corg)levels in a lacustrine borehole section(MED1)from the Yin'gen-Ejinaqi Basin,North China,provides evidence of the occurrence of the Jenkyns Event and its extensive sedimentary responses in the eastern Tethys terrestrial systems.Two distinct spore-pollen assemblages have been identified in MED1(drilling depth:982.4 m to 1267.5 m),with the Cycadopites-Protopinus-Osmundacidites assemblage in the lower part(1267.5 m to 1132.9 m)indicating a middle Early Jurassic age and the Classopollis assemblage in the upper part(1132.9 m to 985.7 m)suggesting a Toarcian age.Framboidal pyrite data suggest more anoxic conditions during the deposition of black mudstone and shale intercalations in the lower part of the Classopollis assemblage(1132.9 m to 1066.9 m),which combined with organic carbon enrichment and negativeδ13Corg excursions,are considered the paleoenvironmental response to the Jenkyns Event in the study area.Furthermore,the evolution of vegetation groups changed from plant groups characterized by bisaccate and cycad pollen,as well as fern spores,to vegetation groups represented by Cheirolepidiaceae pollen across the Jenkyns Event,as evidenced by sporepollen data,together with the clay mineral assemblage change characterized by a notable increase in illite at the expense of kaolinite,suggests that while a subtropical-temperate climate persisted,a change toward warmer and drier conditions most likely occurred in the early Toarcian in the study area.In contrast to the humidification evidenced in many coastal settings,this aridification trend in the Yin'gen-Ejinaqi Basin aligns with the conditions in many inland areas.It is hypothesized that the underlying cause of these divergent changes may be linked to certain patterns of spatially variable water availability on land,potentially driven by extremified hydrological conditions.展开更多
Stock volatility constitutes an adverse psychological stressor,but few large-scale studies have focused on its impact on major adverse cardiovascular events(MACEs)and suicide.Here,we conducted an individual-level time...Stock volatility constitutes an adverse psychological stressor,but few large-scale studies have focused on its impact on major adverse cardiovascular events(MACEs)and suicide.Here,we conducted an individual-level time-stratified case-crossover study to explore the association of daily stock volatility(daily returns and intra-daily oscillations for three kinds of stock indices)with MACEs and suicide among more than 12 million individual decedents from all counties in the mainland of China between 2013 and 2019.For daily stock returns,both stock increases and decreases were associated with increased mortal-ity risks of all MACEs and suicide.There were consistent and positive associations between intra-daily stock oscillations and mortality due to MACEs and suicide.The excess mortality risks occurred at the cur-rent day(lag 0 d),persisted for two days,and were greatest for suicide and hemorrhagic stroke.Taking the present-day Shanghai and Shenzhen 300 Index as an example,a 1%decrease in daily returns was associated with 0.74%-1.04%and 1.77%increases in mortality risks of MACEs and suicide,respectively;the corresponding risk increments were 0.57%-0.85%and 0.92%for a 1%increase in daily returns and 0.67%-0.77%and 1.09%for a 1%increase in intra-daily stock oscillations.The excess risks were more pro-nounced among individuals aged 65-74 years,males,and those with lower education levels.Our findings revealed considerable health risks linked to sociopsychological stressors,which are helpful for the gov-ernment and general public to mitigate the immediate cardiovascular and mental health risks associated with stock market volatility.展开更多
The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are dist...The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.展开更多
Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in s...Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.展开更多
Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using dail...Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.展开更多
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic...Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.展开更多
基金Supported by Joint Funds for the Innovation of Science and Technology,Fujian Province,No.2023Y9187 and No.2021Y9057.
文摘BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.
基金the National Natural Science Foundation of China(42271289).
文摘Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
文摘In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper overviews the methods for extreme event attribution(EEA)and discusses the new insights that EEA provides for infrastructure adaptation.We found that EEA can inform stakeholders about current climate risk,support vulnerability-based and hazard-based adaptations,assist in the development of cost-effective adaptation strategies,and enhance justice and equity in the allocation of adaptation resources.As engineering practice shifts from a retrospective approach to a proactive,forward-looking risk management strategy,EEA can be used together with climate projections to enhance the comprehensiveness of decision making,including planning and preparing for un-precedented extreme events.Additionally,attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed,and future changes in the probability of extreme events are evaluated.Given large uncertainties inherent in event attribution and climate projections,future research should examine the sensitivity of engineering design to climate model uncertainties,and adapt engineering practice,including building codes,to uncertain future conditions.While this study focuses on adaptation planning,EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.
基金funding from the NFR COMBINED (Grant No.328935)The BCPU hosted YZ visit to University of Bergen (Trond Mohn Foundation Grant No.BFS2018TMT01)+2 种基金supported by the National Key Research and Development Program of China (Grant No.2023YFA0805101)the National Natural Science Foundation of China (Grant Nos.42376250 and 41731177)a China Scholarship Council fellowship and the UTFORSK Partnership Program (CONNECTED UTF-2016-long-term/10030)。
文摘Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.
文摘BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association between prediabetes and MACCE in AF patients.Therefore,there is a need for further research to actively screen and manage prediabetes in AF to prevent MACCE.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)increases cardiovascular disease(CVD)risk irrespective of other risk factors.However,large-scale cardiovascular sex and race differences are poorly understood.AIM To investigate the relationship between NAFLD and major cardiovascular and cerebrovascular events(MACCE)in subgroups using a nationally representative United States inpatient sample.METHODS We examined National Inpatient Sample(2019)to identify adult hospitalizations with NAFLD by age,sex,and race using ICD-10-CM codes.Clinical and demographic characteristics,comorbidities,and MACCE-related mortality,acute myocardial infarction(AMI),cardiac arrest,and stroke were compared in NAFLD cohorts by sex and race.Multivariable regression analyses were adjusted for sociodemographic characteristics,hospitalization features,and comorbidities.RESULTS We examined 409130 hospitalizations[median 55(IQR 43-66)years]with NFALD.NAFLD was more common in females(1.2%),Hispanics(2%),and Native Americans(1.9%)than whites.Females often reported non-elective admissions,Medicare enrolment,the median age of 55(IQR 42-67),and poor income.Females had higher obesity and uncomplicated diabetes but lower hypertension,hyperlipidemia,and complicated diabetes than males.Hispanics had a median age of 48(IQR 37-60),were Medicaid enrollees,and had non-elective admissions.Hispanics had greater diabetes and obesity rates than whites but lower hypertension and hyperlipidemia.MACCE,all-cause mortality,AMI,cardiac arrest,and stroke were all greater in elderly individuals(P<0.001).MACCE,AMI,and cardiac arrest were more common in men(P<0.001).Native Americans(aOR 1.64)and Asian Pacific Islanders(aOR 1.18)had higher all-cause death risks than whites.CONCLUSION Increasing age and male sex link NAFLD with adverse MACCE outcomes;Native Americans and Asian Pacific Islanders face higher mortality,highlighting a need for tailored interventions and care.
基金the University of Reading, funded by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fundsupported by the National Natural Science Foundation of China (Grant Nos. 42030603 and 42175044)+1 种基金supported by CSSP-China. NPK was supported by an Independent Research Fellowship from the Natural Environment Research Council (Grant No. NE/L010976/1)supported by the National Centre for Atmospheric Science via the NERC/GCRF programme “Atmospheric hazards in developing countries: risk assessment and early warnings ” (ACREW)。
文摘The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.
基金Supported by Special Project for Improving Science and Technology Innovation Ability of Army Medical University,No.2022XLC09.
文摘BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.
文摘BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center.We developed a predictive model for post-LT MACE(defined as a composite outcome of stroke,new-onset heart failure,severe arrhythmia,and myocardial infarction)using the extreme gradient boosting(XGBoost)machine learning model.We addressed missing data(below 20%)for relevant variables using the k-nearest neighbor imputation method,calculating the mean from the ten nearest neighbors for each case.The modeling dataset included 83 features,encompassing patient and laboratory data,cirrhosis complications,and pre-LT cardiac assessments.Model performance was assessed using the area under the receiver operating characteristic curve(AUROC).We also employed Shapley additive explanations(SHAP)to interpret feature impacts.The dataset was split into training(75%)and testing(25%)sets.Calibration was evaluated using the Brier score.We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting.Scikit-learn and SHAP in Python 3 were used for all analyses.The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.RESULTS Of the 537 included patients,23(4.46%)developed in-hospital MACE,with a mean age at transplantation of 52.9 years.The majority,66.1%,were male.The XGBoost model achieved an impressive AUROC of 0.89 during the training stage.This model exhibited accuracy,precision,recall,and F1-score values of 0.84,0.85,0.80,and 0.79,respectively.Calibration,as assessed by the Brier score,indicated excellent model calibration with a score of 0.07.Furthermore,SHAP values highlighted the significance of certain variables in predicting postoperative MACE,with negative noninvasive cardiac stress testing,use of nonselective beta-blockers,direct bilirubin levels,blood type O,and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level.These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE,making it a valuable tool for clinical practice.CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE,using both cardiovascular and hepatic variables.The model demonstrated impressive performance,aligning with literature findings,and exhibited excellent calibration.Notably,our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data,reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.
基金The National Key Research and Development Program of China under contract No.2022YFC3106205the National Natural Science Foundation of China under contract Nos 41976159 and 41776098.
文摘Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected beach is landward and opposite to the Jinmeng Bay Beach.Nowadays,with climate changes,frequent heavy rainfalls in Hebei Province rise flood hazards at the Tanghe Estuary.Under this circumstance,potential influences on the projected beach of a flood are investigated for sustainable managements.A multi-coupled model is established and based on the data from field observations,where wave model,flow model and multifraction sediment transport model are included.In addition,the impacts on the projected beach of different components in extreme events are discussed,including the spring tides,storm winds,storm waves,and sediment inputs.The numerical results indicate the following result.(1)Artificial islands protect the coasts from erosion by obstructing landward waves,but rise the deposition risks along the target shore.(2)Flood brings massive sediment inputs and leads to scours at the estuary,but the currents with high sediment concentration contribute to the accretions along the target shore.(3)The projected beach mitigates flood actions and reduces the maximum mean sediment concentration along the target shore by 20%.(4)The storm winds restrict the flood and decrease the maximum mean sediment concentration by 21%.With the combined actions of storm winds and waves,the maximum value further declines by 38%.(5)A quadratic polynomial relationship between the deposition depths and the maximum sediment inputs with flood is established for estimations on the potential morphological changes after the flood process in extreme events.For the uncertainty of estuarine floods,continuous monitoring on local hydrodynamic variations and sediment characteristics at Tanghe Estuary is necessary.
基金financially supported by China Geological Survey Project(DD20230138DD20242504)+1 种基金The National Natural Science Foundation of China(Grant Numbers 41702366)The Sinopec Project(34550000-21FW2099-0055)。
文摘The Jenkyns Event,more widely known as the Toarcian Oceanic Anoxic Event(T-OAE),is marked by globally distributed negative carbon-isotope excursions,widespread oxygen depletion,and large-scale organic carbon burial,which indicate major climate/environmental perturbations in Earth's surface systems during the Early Jurassic.Although extensive research has been conducted in European continental settings,particularly in the western peri-Tethys regions,the impacts of this event beyond Europe remains largely unexplored.Here,a multiapproach study including investigations into the sporepollen assemblages,pyrite framboids,clay minerals,total organic carbon(TOC)levels,and organic carbon isotope(δ13Corg)levels in a lacustrine borehole section(MED1)from the Yin'gen-Ejinaqi Basin,North China,provides evidence of the occurrence of the Jenkyns Event and its extensive sedimentary responses in the eastern Tethys terrestrial systems.Two distinct spore-pollen assemblages have been identified in MED1(drilling depth:982.4 m to 1267.5 m),with the Cycadopites-Protopinus-Osmundacidites assemblage in the lower part(1267.5 m to 1132.9 m)indicating a middle Early Jurassic age and the Classopollis assemblage in the upper part(1132.9 m to 985.7 m)suggesting a Toarcian age.Framboidal pyrite data suggest more anoxic conditions during the deposition of black mudstone and shale intercalations in the lower part of the Classopollis assemblage(1132.9 m to 1066.9 m),which combined with organic carbon enrichment and negativeδ13Corg excursions,are considered the paleoenvironmental response to the Jenkyns Event in the study area.Furthermore,the evolution of vegetation groups changed from plant groups characterized by bisaccate and cycad pollen,as well as fern spores,to vegetation groups represented by Cheirolepidiaceae pollen across the Jenkyns Event,as evidenced by sporepollen data,together with the clay mineral assemblage change characterized by a notable increase in illite at the expense of kaolinite,suggests that while a subtropical-temperate climate persisted,a change toward warmer and drier conditions most likely occurred in the early Toarcian in the study area.In contrast to the humidification evidenced in many coastal settings,this aridification trend in the Yin'gen-Ejinaqi Basin aligns with the conditions in many inland areas.It is hypothesized that the underlying cause of these divergent changes may be linked to certain patterns of spatially variable water availability on land,potentially driven by extremified hydrological conditions.
基金supported by the National Key Research and Development Program(2022YFC3702701)the Shanghai Municipal Science and Technology Commission(21TQ015)the Shanghai International Science and Technology Partnership Project,China(21230780200).
文摘Stock volatility constitutes an adverse psychological stressor,but few large-scale studies have focused on its impact on major adverse cardiovascular events(MACEs)and suicide.Here,we conducted an individual-level time-stratified case-crossover study to explore the association of daily stock volatility(daily returns and intra-daily oscillations for three kinds of stock indices)with MACEs and suicide among more than 12 million individual decedents from all counties in the mainland of China between 2013 and 2019.For daily stock returns,both stock increases and decreases were associated with increased mortal-ity risks of all MACEs and suicide.There were consistent and positive associations between intra-daily stock oscillations and mortality due to MACEs and suicide.The excess mortality risks occurred at the cur-rent day(lag 0 d),persisted for two days,and were greatest for suicide and hemorrhagic stroke.Taking the present-day Shanghai and Shenzhen 300 Index as an example,a 1%decrease in daily returns was associated with 0.74%-1.04%and 1.77%increases in mortality risks of MACEs and suicide,respectively;the corresponding risk increments were 0.57%-0.85%and 0.92%for a 1%increase in daily returns and 0.67%-0.77%and 1.09%for a 1%increase in intra-daily stock oscillations.The excess risks were more pro-nounced among individuals aged 65-74 years,males,and those with lower education levels.Our findings revealed considerable health risks linked to sociopsychological stressors,which are helpful for the gov-ernment and general public to mitigate the immediate cardiovascular and mental health risks associated with stock market volatility.
基金partially supported by the Strategic Priority Research Program of Chinese Academy of Science(No.XDB 34030000)the National Natural Science Foundation of China(Nos.11975293 and 12205348)。
文摘The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.
基金supported by the National Key Research and Development Program of China(No.2023YFB2604600).
文摘Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.
基金funded by the National Natural Science Foundation of China(42171145,42171147)the Gansu Provincial Science and Technology Program(22ZD6FA005)the Key Talent Program of Gansu Province.
文摘Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2021JJ40444,and 2019JJ30019)+3 种基金the Research Foundation of Education Bureau of Hunan Province of China(Grant No.20A430)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC3054)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN-0015)the Doctoral Research Fund of University of South China。
文摘Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.