期刊文献+
共找到7,204篇文章
< 1 2 250 >
每页显示 20 50 100
Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models
1
作者 Zhaoliang Wu Yuewei Wu +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2024年第3期3391-3412,共22页
Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ... Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach. 展开更多
关键词 ABSA ASQP LLMs sentiment analysis Chinese comments
下载PDF
Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model
2
作者 Jiawen Li Yuesheng Huang +3 位作者 Yayi Lu Leijun Wang Yongqi Ren Rongjun Chen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1581-1599,共19页
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci... In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research. 展开更多
关键词 sentiment analysis keyword-generated image machine learning Word2Vec-TextRank CNN-SVM
下载PDF
Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis
3
作者 Longgang Zhao Seok-Won Lee 《Computers, Materials & Continua》 SCIE EI 2024年第10期1855-1877,共23页
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha... Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy. 展开更多
关键词 Deep learning ONTOLOGY fine-grained sentiment analysis online reviews
下载PDF
DeBERTa-GRU: Sentiment Analysis for Large Language Model
4
作者 Adel Assiri Abdu Gumaei +2 位作者 Faisal Mehmood Touqeer Abbas Sami Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第6期4219-4236,共18页
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe... Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques. 展开更多
关键词 DeBERTa GRU Naive Bayes LSTM sentiment analysis large language model
下载PDF
Structured Multi-Head Attention Stock Index Prediction Method Based Adaptive Public Opinion Sentiment Vector
5
作者 Cheng Zhao Zhe Peng +2 位作者 Xuefeng Lan Yuefeng Cen Zuxin Wang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1503-1523,共21页
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ... The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits. 展开更多
关键词 Public opinion sentiment structured multi-head attention stock index prediction deep learning
下载PDF
Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network
6
作者 Kelan Ren Facheng Yan +3 位作者 Honghua Chen Wen Jiang Bin Wei Mingshu Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期789-807,共19页
The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stan... The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures.This paper focuses on effectively mining and utilizing sentimentsemantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network(SentiHAN)for cross-target stance detection.SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various fine-grain levels.This model integrates phrase-level combinatorial sentiment knowledge to effectively bridge the knowledge gap between known and unknown targets.By doing so,it enables a comprehensive understanding of stance representations for unknown targets across different sentiments and semantic structures.The model’s ability to leverage sentimentsemantics knowledge enhances its performance in detecting stances that may not be directly observable from the immediate context.Extensive experimental results indicate that SentiHAN significantly outperforms existing benchmark methods in terms of both accuracy and robustness.Moreover,the paper employs ablation studies and visualization techniques to explore the intricate relationship between sentiment and stance.These analyses further confirm the effectiveness of sentence-level combinatorial sentiment knowledge in improving stance detection capabilities. 展开更多
关键词 Cross-target stance detection sentiment analysis commentary-level texts hierarchical attention network
下载PDF
RUSAS: Roman Urdu Sentiment Analysis System
7
作者 Kazim Jawad Muhammad Ahmad +1 位作者 Majdah Alvi Muhammad Bux Alvi 《Computers, Materials & Continua》 SCIE EI 2024年第4期1463-1480,共18页
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern... Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%. 展开更多
关键词 Roman Urdu sentiment analysis Roman Urdu language detector Roman Urdu spelling checker FLASK
下载PDF
Spatial-temporal Patterns of Urban Parks’Effects on the Sentiments and Their Associated Factors Based on Social Media Data——a Case Study in Beijing
8
作者 YUAN Yuting WANG Juan +3 位作者 WEI Yali ZHU Yanrong SHI Changsheng MENG Bin 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第2期95-110,共16页
As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi... As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies. 展开更多
关键词 urban parks sentiment analysis social media data SEM BEIJING
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
9
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
10
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Artificial Intelligence-Based Sentiment Analysis of Dynamic Message Signs that Report Fatality Numbers Using Connected Vehicle Data
11
作者 Dorcas O. Okaidjah Jonathan Wood Christopher M. Day 《Journal of Transportation Technologies》 2024年第4期590-606,共17页
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe... This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone. 展开更多
关键词 Intelligent Transportation System sentiment Analysis Dynamic Message Signs Large Language Models Traffic Safety Artificial Intelligence
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
12
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
13
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
Analysis of Public Sentiment regarding COVID-19 Vaccines on the Social Media Platform Reddit
14
作者 Lucien Dikla Ngueleo Jules Pagna Disso +2 位作者 Armel Ayimdji Tekemetieu Justin Moskolaï Ngossaha Michael Nana Kameni 《Journal of Computer and Communications》 2024年第2期80-108,共29页
This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from No... This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis. 展开更多
关键词 COVID-19 Vaccine TextBlob Twitter-RoBERTa-Base-sentiment sentiment Analysis Latent Dirichlet Allocation
下载PDF
Aspect-Level Sentiment Analysis Incorporating Semantic and Syntactic Information
15
作者 Jiachen Yang Yegang Li +2 位作者 Hao Zhang Junpeng Hu Rujiang Bai 《Journal of Computer and Communications》 2024年第1期191-207,共17页
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base... Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification. 展开更多
关键词 Aspect-Level sentiment Analysis Attentional Mechanisms Dependent Syntactic Trees Graph Convolutional Neural Networks
下载PDF
基于前后景分割的图像情感分析
16
作者 高玮军 刘书君 孙子博 《计算机工程与应用》 北大核心 2025年第1期206-213,共8页
图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择... 图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择、特征融合和情感识别分类。现有的大部分图像情感分析工作以图像整体为单位进行输入,未能充分发挥图像中局部特征的情感作用。如果不能对图像的全局特征和局部特征作出区分,当图像出现清晰度不高、背景噪声较多等问题时,图像的全局特征就会变得较为敏感,特征提取和识别工作将会受到严重干扰,对情感分析的准确性产生一定影响。针对目前图像情感分析存在的不足,提出一种基于前后景分割的图像情感分析方法。该方法以YOLOv5为框架,引入ConvNeXt模块和AFF模块,分别进行特征提取和注意力融合。实验结果表明,与目前比较流行的几种图像情感分析方法相比,该方法对于包含更多情感信息和语义信息的场景更为适用,性能也有所提升。 展开更多
关键词 图像情感分析 前后景分割 特征融合 YOLOv5 局部特征 全局特征
下载PDF
媒体关注、投资者情绪与企业资金期限错配
17
作者 尹林辉 张靖婉 《华东经济管理》 北大核心 2025年第1期106-116,共11页
为缓解企业债务“爆雷”背后的资金期限错配,文章以2008—2022年中国A股上市公司为研究样本,分析媒体关注、投资者情绪与企业资金期限错配三者的关系。研究发现:媒体关注能缓解企业资金期限错配,投资者情绪会抑制媒体关注对企业资金期... 为缓解企业债务“爆雷”背后的资金期限错配,文章以2008—2022年中国A股上市公司为研究样本,分析媒体关注、投资者情绪与企业资金期限错配三者的关系。研究发现:媒体关注能缓解企业资金期限错配,投资者情绪会抑制媒体关注对企业资金期限错配的缓解作用;机制分析表明,媒体关注通过缓解融资约束和抑制管理层短视来降低企业资金期限错配;异质性分析显示,媒体关注对企业资金期限错配的缓解作用在非负面媒体报道、长期借款占比低、非国有以及内部控制质量高的企业中更显著。研究结论为缓解企业资金期限错配提供理论依据和政策参考,有助于降低市场系统性金融风险,更好支撑实体企业高质量发展。 展开更多
关键词 媒体关注 资金期限错配 投资者情绪 融资约束 管理层短视
下载PDF
突发公共卫生事件下投资者情绪对股票市场的影响研究
18
作者 于慧佳 《江苏商论》 2025年第1期77-82,共6页
2019年12月底,由美国暴发的新冠疫情传入中国,疫情对全球、全国的经济造成了显著影响,全球股市也进入寒冬。股市是经济的晴雨表,在中国的股票市场中,有超过九成的投资者属于个人投资者,个人投资者的情绪反映与股票市场的涨跌息息相关。... 2019年12月底,由美国暴发的新冠疫情传入中国,疫情对全球、全国的经济造成了显著影响,全球股市也进入寒冬。股市是经济的晴雨表,在中国的股票市场中,有超过九成的投资者属于个人投资者,个人投资者的情绪反映与股票市场的涨跌息息相关。基于此,论文选取换手率、成交量、腾落比例、融资融券余额和百度搜索指数这5个单项指标通过主成分分析法建立投资者情绪综合指标。同时选取相关指标构建疫情综合指标,并通过VAR模型、Granger因果检验、脉冲响应分析、方差分解等方法考察二者与股票收益率之间的关系,同时,提出建议。 展开更多
关键词 冲击事件 投资者情绪 主成分分析 VAR 脉冲响应
下载PDF
动态时间序列建模的多模态情感识别方法
19
作者 李佳泽 梅红岩 +1 位作者 贾丽云 李文娅 《计算机工程与应用》 北大核心 2025年第1期196-205,共10页
现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部... 现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部-全局信息,并通过双向序列建模捕获信号中的空间信息。考虑到文本信息对情感分析的重要性,采用基于Transformer模型的卷积神经网络捕捉文本中不同位置间的依赖关系建模较长的上下文信息,最后将两种模态进行融合得到最终的情感分类。模型在IEMOCAP数据集上的实验结果表明,相比其他主流模型具有更好的多模态情感识别效果。 展开更多
关键词 多模态情感分析 动态时间窗口 双向时间序列建模 卷积神经网络 多模态融合
下载PDF
On the Sentimentalism in Virginia Wool's Mrs. Dalloway
20
作者 高悦 孙玲 《商情》 2014年第25期280-280,共1页
关键词 摘要 编辑部 编辑工作 读者
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部