This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather event...This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.展开更多
Objective:According to the World Federation of Medical Education,critical thinking should be part of the training of medical and paramedical students.Professionals can improve the quality of care of patients after sur...Objective:According to the World Federation of Medical Education,critical thinking should be part of the training of medical and paramedical students.Professionals can improve the quality of care of patients after surgery by having or acquiring this skill in health care.Also,Emotional intelligence is introduced as an impor tant and effective factor on the professional performance and mental health of healthcare professionals.Thus,the present study was designed and implemented to determine the relationship between emotional intelligence and critical thinking among operating room nursing students of medical sciences universities in Iran.Methods:This cross-sectional study was done on 420 operating room students in 10 top medical sciences universities of Iran in 2022.The sampling method in this research was multistage sampling.The data collection instruments included demographic characteristics,Rickett's critical thinking,and Bradberry-Greaves'emotional intelligence questionnaires.After receiving the ethics code,data collection was done for 2 months.For data analysis,descriptive and inferential analyses including independent t-tests,analysis of variance,and Pearson correlation were used.The collected data were analyzed by SPSS 18(IBM Corporation,Armonk,New York,United States).P-value<0.05 was considered significant.Results:The mean age of the students participating in this study was 23.02±3.70 years,with women constituting 67.4%of them.The results of data analysis indicated that the mean total score of critical thinking and emotional intelligence was 124.10±37.52 and 114.12±43.63,respectively.A direct significant correlation between critical thinking and emotional intelligence(r=0.459,P-value<0.001)and a significant relationship between gender and emotional intelligence(P-value=0.028)were found.Conclusions:Based on the present study results,educational managers in the Ministry of Health are suggested to consider suitable educational programs for improving critical thinking and emotional intelligence to enhance the quality of care provided by students in operating rooms.展开更多
In commanding decision-making, the commander usually needs to know a lot of situations(intelligence) on the adversary. Because of the military intelligence with opposability, it is inevitable that intelligence perso...In commanding decision-making, the commander usually needs to know a lot of situations(intelligence) on the adversary. Because of the military intelligence with opposability, it is inevitable that intelligence personnel take some deceptive information released by the rival as intelligence data in the process of intelligence gathering. Since the failure of intelligence is likely to lead to a serious aftereffect, the recognition of intelligence is a very important problem. An elementary research on recognizing military intelligence and puts forward a systematic processing method are made. First, the types and characteristics of military intelligence are briefly discussed, a research thought of recognizing military intelligence by means of recognizing military hypotheses are presented. Next, the reasoning mode and framework for recognizing military hypotheses are presented from the angle of psychology of intelligence analysis and non-monotonic reasoning. Then, a model for recognizing military hypothesis is built on the basis of fuzzy judgement information given by intelligence analysts. A calculative example shows that the model has the characteristics of simple calculation and good maneuverability. Last, the methods that selecting the most likely hypothesis from the survival hypotheses via final recognition are discussed.展开更多
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix metho...AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.展开更多
The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition o...The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition of determined open cabin position error,the allowable range of entry angle error is inversely calculated with interdiction probability. The calculated results indicate that the method mentioned can estimate the intelligence missile interdiction efficiency to the runway and the range of entry angle error,which provides available basis for analyzing the intelligence missile attack assignment on the way.展开更多
It analyzes three recognition methods for five elements,i.e.dot,line,loop,clothing pattern as well as characters,and also applies intelligent points and tangential curve in the CAD system to solve the problem complain...It analyzes three recognition methods for five elements,i.e.dot,line,loop,clothing pattern as well as characters,and also applies intelligent points and tangential curve in the CAD system to solve the problem complained by CAD users.It indicates that recognition of five elements is a foundational technique of intelligence in clothing pattern CAD system.Common functions in operation state such as move,rotation,flip,measure,should precede ones in element state as dot,line,and pattern.Moreover,it is realized that the less skill the CAD user needs,the more the CAD software is high-tech.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused ...The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused on prognostic modeling.The ideas may be applied also by using another probabilistic models which supported by software tools and can predict successfulness or risks on a level of probability distribution functions.The approach includes description of the proposed probabilistic models,optimization methods for rationale actions and incremental algorithms for solving the problems of supporting decision-making on the base of monitored data and rationale robot actions in uncertainty conditions.The approach means practically a proactive commitment to excellence in uncertainty conditions.A suitability of the proposed models and methods is demonstrated by examples which cover wide applications of artificial intelligence systems.展开更多
Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under s...Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under secrecy.As a consequence,limited data(sets)regarding these incidents are available.Although various academic and practitioner public communities addressed some of the key points and dilemmas that surround cyber operations(such as attack,target identification and selection,and collateral damage),still methodologies and models are needed in order to plan,execute,and assess them in a responsibly and legally compliant way.Based on these facts,it is the aim of this article to propose a model that i))estimates and classifies the effects of cyber operations,and ii)assesses proportionality in order to support targeting decisions in cyber operations.In order to do that,a multi-layered fuzzy model was designed and implemented by analysing real and virtual realistic cyber operations combined with interviews and focus groups with technical e military experts.The proposed model was evaluated on two cyber operations use cases in a focus group with four technical e military experts.Both the design and the results of the evaluation are revealed in this article.展开更多
The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured ...The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.展开更多
Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to det...Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to determine the prevalence of AI in ROP computation and compare the computation accuracies with empirical models.Artificial Neural Network(ANN)accounted for over 92%of the AI techniques used for ROP computation and Weight on Bit(WOB)mostly influenced the computation accuracy.The accuracy of AI algorithms is better than the empirical models thus,will improve the drilling efficiency,reduce cost and enhance the development of pad wells.展开更多
In the last few years,the use of artificial intelligence(AI)and machine learning(ML)techniques have received considerable notice as trending technologies in the petroleum industry.The utilization of new tools and mode...In the last few years,the use of artificial intelligence(AI)and machine learning(ML)techniques have received considerable notice as trending technologies in the petroleum industry.The utilization of new tools and modern technologies creates huge volumes of structured and un-structured data.Organizing and processing of these information at faster pace for the performance assessment and forecasting for field development and management is continuously growing as an important field of investigation.Various difficulties which were faced in predicting the operative features by utilizing the conventional methods have directed the academia and industry toward investigations focusing on the applications of ML and data driven approaches in exploration and production operations to achieve more accurate predictions which improves decision-making processes.This research provides a review to examine the use cases and application of AI and ML techniques in petroleum industry for optimization of the upstream processes such as reservoir studies,drilling and production engineering.The challenges related to routine approaches for prognosis of operative parameters have been evaluated and the use cases of performance optimizations through employing data-driven approaches resulted in enhancement of decision-making workflows have been presented.Moreover,possible scenarios of the way that artificial intelligence will develop and influence the oil and gas industry and how it may change it in the future was discussed.展开更多
Background:Novel coronavirus disease 2019(COVID-19)is an ongoing global pandemic with high mortality.Although several studies have reported different risk factors for mortality in patients based on traditional analyti...Background:Novel coronavirus disease 2019(COVID-19)is an ongoing global pandemic with high mortality.Although several studies have reported different risk factors for mortality in patients based on traditional analytics,few studies have used artificial intelligence(AI)algorithms.This study investigated prognostic factors for COVID-19 patients using AI methods.Methods:COVID-19 patients who were admitted in Wuhan Infectious Diseases Hospital from December 29,2019 to March 2,2020 were included.The whole cohort was randomly divided into training and testing sets at a 6:4 ratio.Demographic and clinical data were analyzed to identify predictors of mortality using least absolute shrinkage and selection operator(LASSO)regression and LASSO-based artificial neural network(ANN)models.The predictive performance of the models was evaluated using receiver operating characteristic(ROC)curve analysis.Results:A total of 1145 patients(610 male,53.3%)were included in the study.Of the 1145 patients,704 were assigned to the training set and 441 were assigned to the testing set.The median age of the patients was 57 years(range:47-66 years).Severity of illness,age,platelet count,leukocyte count,prealbumin,C-reactive protein(CRP),total bilirubin,Acute Physiology and Chronic Health Evaluation(APACHE)II score,and Sequential Organ Failure Assessment(SOFA)score were identified as independent prognostic factors for mortality.Incorporating these nine factors into the LASSO regression model yielded a correct classification rate of 0.98,with area under the ROC curve(AUC)values of 0.980 and 0.990 in the training and testing cohorts,respectively.Incorporating the same factors into the LASSO-based ANN model yielded a correct classification rate of 0.990,with an AUC of 0.980 in both the training and testing cohorts.Conclusions:Both the LASSO regression and LASSO-based ANN model accurately predicted the clinical outcome of patients with COVID-19.Severity of illness,age,platelet count,leukocyte count,prealbumin,CRP,total bilirubin,APACHE II score,and SOFA score were identified as prognostic factors for mortality in patients with COVID-19.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
The paper presents modern perception of crisis management and its importance for security in the context of non-military threats. It shows the role of the police as a part of a governmental system, performing their ta...The paper presents modern perception of crisis management and its importance for security in the context of non-military threats. It shows the role of the police as a part of a governmental system, performing their tasks in all stages of crisis management. And it is about simulator crisis situation.展开更多
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ...Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.展开更多
To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta c...To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.展开更多
文摘This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.
文摘Objective:According to the World Federation of Medical Education,critical thinking should be part of the training of medical and paramedical students.Professionals can improve the quality of care of patients after surgery by having or acquiring this skill in health care.Also,Emotional intelligence is introduced as an impor tant and effective factor on the professional performance and mental health of healthcare professionals.Thus,the present study was designed and implemented to determine the relationship between emotional intelligence and critical thinking among operating room nursing students of medical sciences universities in Iran.Methods:This cross-sectional study was done on 420 operating room students in 10 top medical sciences universities of Iran in 2022.The sampling method in this research was multistage sampling.The data collection instruments included demographic characteristics,Rickett's critical thinking,and Bradberry-Greaves'emotional intelligence questionnaires.After receiving the ethics code,data collection was done for 2 months.For data analysis,descriptive and inferential analyses including independent t-tests,analysis of variance,and Pearson correlation were used.The collected data were analyzed by SPSS 18(IBM Corporation,Armonk,New York,United States).P-value<0.05 was considered significant.Results:The mean age of the students participating in this study was 23.02±3.70 years,with women constituting 67.4%of them.The results of data analysis indicated that the mean total score of critical thinking and emotional intelligence was 124.10±37.52 and 114.12±43.63,respectively.A direct significant correlation between critical thinking and emotional intelligence(r=0.459,P-value<0.001)and a significant relationship between gender and emotional intelligence(P-value=0.028)were found.Conclusions:Based on the present study results,educational managers in the Ministry of Health are suggested to consider suitable educational programs for improving critical thinking and emotional intelligence to enhance the quality of care provided by students in operating rooms.
文摘In commanding decision-making, the commander usually needs to know a lot of situations(intelligence) on the adversary. Because of the military intelligence with opposability, it is inevitable that intelligence personnel take some deceptive information released by the rival as intelligence data in the process of intelligence gathering. Since the failure of intelligence is likely to lead to a serious aftereffect, the recognition of intelligence is a very important problem. An elementary research on recognizing military intelligence and puts forward a systematic processing method are made. First, the types and characteristics of military intelligence are briefly discussed, a research thought of recognizing military intelligence by means of recognizing military hypotheses are presented. Next, the reasoning mode and framework for recognizing military hypotheses are presented from the angle of psychology of intelligence analysis and non-monotonic reasoning. Then, a model for recognizing military hypothesis is built on the basis of fuzzy judgement information given by intelligence analysts. A calculative example shows that the model has the characteristics of simple calculation and good maneuverability. Last, the methods that selecting the most likely hypothesis from the survival hypotheses via final recognition are discussed.
基金Supported by the Priming Scientific Research Foundation for the Junior Researcher in Beijing Tongren Hospital,Capital Medical University
文摘AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.
文摘The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition of determined open cabin position error,the allowable range of entry angle error is inversely calculated with interdiction probability. The calculated results indicate that the method mentioned can estimate the intelligence missile interdiction efficiency to the runway and the range of entry angle error,which provides available basis for analyzing the intelligence missile attack assignment on the way.
基金Supported by Zhejiang Natural Science Foundation(No.697068)
文摘It analyzes three recognition methods for five elements,i.e.dot,line,loop,clothing pattern as well as characters,and also applies intelligent points and tangential curve in the CAD system to solve the problem complained by CAD users.It indicates that recognition of five elements is a foundational technique of intelligence in clothing pattern CAD system.Common functions in operation state such as move,rotation,flip,measure,should precede ones in element state as dot,line,and pattern.Moreover,it is realized that the less skill the CAD user needs,the more the CAD software is high-tech.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
文摘The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused on prognostic modeling.The ideas may be applied also by using another probabilistic models which supported by software tools and can predict successfulness or risks on a level of probability distribution functions.The approach includes description of the proposed probabilistic models,optimization methods for rationale actions and incremental algorithms for solving the problems of supporting decision-making on the base of monitored data and rationale robot actions in uncertainty conditions.The approach means practically a proactive commitment to excellence in uncertainty conditions.A suitability of the proposed models and methods is demonstrated by examples which cover wide applications of artificial intelligence systems.
文摘Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under secrecy.As a consequence,limited data(sets)regarding these incidents are available.Although various academic and practitioner public communities addressed some of the key points and dilemmas that surround cyber operations(such as attack,target identification and selection,and collateral damage),still methodologies and models are needed in order to plan,execute,and assess them in a responsibly and legally compliant way.Based on these facts,it is the aim of this article to propose a model that i))estimates and classifies the effects of cyber operations,and ii)assesses proportionality in order to support targeting decisions in cyber operations.In order to do that,a multi-layered fuzzy model was designed and implemented by analysing real and virtual realistic cyber operations combined with interviews and focus groups with technical e military experts.The proposed model was evaluated on two cyber operations use cases in a focus group with four technical e military experts.Both the design and the results of the evaluation are revealed in this article.
文摘The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.
文摘Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to determine the prevalence of AI in ROP computation and compare the computation accuracies with empirical models.Artificial Neural Network(ANN)accounted for over 92%of the AI techniques used for ROP computation and Weight on Bit(WOB)mostly influenced the computation accuracy.The accuracy of AI algorithms is better than the empirical models thus,will improve the drilling efficiency,reduce cost and enhance the development of pad wells.
文摘In the last few years,the use of artificial intelligence(AI)and machine learning(ML)techniques have received considerable notice as trending technologies in the petroleum industry.The utilization of new tools and modern technologies creates huge volumes of structured and un-structured data.Organizing and processing of these information at faster pace for the performance assessment and forecasting for field development and management is continuously growing as an important field of investigation.Various difficulties which were faced in predicting the operative features by utilizing the conventional methods have directed the academia and industry toward investigations focusing on the applications of ML and data driven approaches in exploration and production operations to achieve more accurate predictions which improves decision-making processes.This research provides a review to examine the use cases and application of AI and ML techniques in petroleum industry for optimization of the upstream processes such as reservoir studies,drilling and production engineering.The challenges related to routine approaches for prognosis of operative parameters have been evaluated and the use cases of performance optimizations through employing data-driven approaches resulted in enhancement of decision-making workflows have been presented.Moreover,possible scenarios of the way that artificial intelligence will develop and influence the oil and gas industry and how it may change it in the future was discussed.
基金supported by the National Natural Science Foundation of China(Grant No.81,873,944 and 81,971,869)the Shanghai Science and Technology Commission(Grant No.20DZ2200500).
文摘Background:Novel coronavirus disease 2019(COVID-19)is an ongoing global pandemic with high mortality.Although several studies have reported different risk factors for mortality in patients based on traditional analytics,few studies have used artificial intelligence(AI)algorithms.This study investigated prognostic factors for COVID-19 patients using AI methods.Methods:COVID-19 patients who were admitted in Wuhan Infectious Diseases Hospital from December 29,2019 to March 2,2020 were included.The whole cohort was randomly divided into training and testing sets at a 6:4 ratio.Demographic and clinical data were analyzed to identify predictors of mortality using least absolute shrinkage and selection operator(LASSO)regression and LASSO-based artificial neural network(ANN)models.The predictive performance of the models was evaluated using receiver operating characteristic(ROC)curve analysis.Results:A total of 1145 patients(610 male,53.3%)were included in the study.Of the 1145 patients,704 were assigned to the training set and 441 were assigned to the testing set.The median age of the patients was 57 years(range:47-66 years).Severity of illness,age,platelet count,leukocyte count,prealbumin,C-reactive protein(CRP),total bilirubin,Acute Physiology and Chronic Health Evaluation(APACHE)II score,and Sequential Organ Failure Assessment(SOFA)score were identified as independent prognostic factors for mortality.Incorporating these nine factors into the LASSO regression model yielded a correct classification rate of 0.98,with area under the ROC curve(AUC)values of 0.980 and 0.990 in the training and testing cohorts,respectively.Incorporating the same factors into the LASSO-based ANN model yielded a correct classification rate of 0.990,with an AUC of 0.980 in both the training and testing cohorts.Conclusions:Both the LASSO regression and LASSO-based ANN model accurately predicted the clinical outcome of patients with COVID-19.Severity of illness,age,platelet count,leukocyte count,prealbumin,CRP,total bilirubin,APACHE II score,and SOFA score were identified as prognostic factors for mortality in patients with COVID-19.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
文摘The paper presents modern perception of crisis management and its importance for security in the context of non-military threats. It shows the role of the police as a part of a governmental system, performing their tasks in all stages of crisis management. And it is about simulator crisis situation.
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
基金supported by Hunan Province Enterprise Technology Innovation and Entrepreneurship Team Support Program Project,Hunan Province Science and Technology Innovation Leading Talent Project[2023RC1088]Hunan Province Science and Technology Talent Support Project[2023TJ-Z10].
文摘Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.
文摘To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.